题目内容

【题目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若满足g(x)=﹣1的x有四个,则t的取值范围是(
A.
B.
C.
D.

【答案】B
【解析】解:令y=xex , 则y'=(1+x)ex , 由y'=0,得x=﹣1, 当x∈(﹣∞,﹣1)时,y'<0,函数y单调递减,
当x∈(﹣1,+∞)时,y'>0,函
数y单调递增.作出y=xex图象,
利用图象变换得f(x)=|xex|图象(如图10),
令f(x)=m,则关于m方程h(m)=m2﹣tm+1=0
两根分别在 时(如图11),
满足g(x)=﹣1的x有4个,由
解得
故选:B.


【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网