题目内容
【题目】设函数f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)讨论f(x)在其定义域上的单调性;
(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.
【答案】
(1)解:f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,
由f′(x)=0,得x1= ,x2= ,x1<x2,
∴由f′(x)<0得x< ,x> ;
由f′(x)>0得 <x< ;
故f(x)在(﹣∞, )和( ,+∞)单调递减,
在( , )上单调递增;
(2)解:∵a>0,∴x1<0,x2>0,∵x∈[0,1],当 时,即a≥4
①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.
②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,
因此f(x)在x=x2= 处取得最大值,又f(0)=1,f(1)=a,
∴当0<a<1时,f(x)在x=1处取得最小值;
当a=1时,f(x)在x=0和x=1处取得最小值;
当1<a<4时,f(x)在x=0处取得最小值.
【解析】(1)利用导数判断函数的单调性即可;(2)利用(1)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:
阅读时间 | ||||||
人数 | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作成如图所示的等高条形图.
(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的终点值作为代表);
(2)根据已知条件完成下面的列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?
男生 | 女生 | 总计 | |
阅读达人 | |||
非阅读达人 | |||
总计 |
附:参考公式,其中.
临界值表:
() | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |