题目内容

【题目】设函数f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)讨论f(x)在其定义域上的单调性;
(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.

【答案】
(1)解:f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2

由f′(x)=0,得x1= ,x2= ,x1<x2

∴由f′(x)<0得x< ,x>

由f′(x)>0得 <x<

故f(x)在(﹣∞, )和( ,+∞)单调递减,

在( )上单调递增;


(2)解:∵a>0,∴x1<0,x2>0,∵x∈[0,1],当 时,即a≥4

①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.

②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,

因此f(x)在x=x2= 处取得最大值,又f(0)=1,f(1)=a,

∴当0<a<1时,f(x)在x=1处取得最小值;

当a=1时,f(x)在x=0和x=1处取得最小值;

当1<a<4时,f(x)在x=0处取得最小值.


【解析】(1)利用导数判断函数的单调性即可;(2)利用(1)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网