题目内容
【题目】已知双曲线C:(a>0,b>0)的渐近线方程为y=±x,右顶点为(1,0).
(1)求双曲线C的方程;
(2)已知直线y=x+m与双曲线C交于不同的两点A,B,且线段AB的中点为,当x0≠0时,求的值.
【答案】(1);(2)3
【解析】
(1)由双曲线的渐近线方程为: ,得到 ,又a=1,即可得到双曲线的方程;
(Ⅱ)联立直线方程和双曲线方程,消去y,得到x的方程,再由判别式大于0,运用韦达定理,以及中点坐标公式,得到中点的横坐标,再由直线方程得到纵坐标,进而得到答案.
(1)双曲线C:-=1(a>0,b>0)的渐近线方程为y=±x,
由题意得=,a=1,解得b=,所以双曲线的方程为x2-=1.
(2)联立直线方程和双曲线方程,得到消去y,得2x2-2mx-m2-3=0,则Δ=4m2+8(m2+3)>0,设A(x1,y1),B(x2,y2),x1+x2=m,则中点M的横坐标为x0=,y0=x0+m=m,所以=3.
【题目】在如图所示的六面体中,四边形是边长为的正方形,四边形是梯形,,平面平面,,.
(1)在图中作出平面 与平面的交线,并写出作图步骤,但不要求证明;
(2)求证:平面;
(3)求平面与平面所成角的余弦值
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
(1)根据茎叶图,比较两城市满意度评分的平均值的大小(不要求计算具体值,给出结论即可);
(2)若得分不低于85分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有的把握认为城市拥堵与认可共享单车有关;
合计 | |||
认可 | |||
不认可 | |||
合计 |
(3)若此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?
(参考公式:)
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |