题目内容
【题目】设椭圆 ()的左、右焦点分别为,过的直线交椭圆于,两点,若椭圆的离心率为,的周长为.
(1)求椭圆的方程;
(2)设不经过椭圆的中心而平行于弦的直线交椭圆于点,,设弦,的中点分别为,证明:三点共线.
【答案】(Ⅰ) (Ⅱ)详见解析
【解析】
(Ⅰ)由的周长为求得,由离心率求得,从而可得的值,进而可得结果;(Ⅱ)易知,当直线的斜率不存在时,三点共线;当直线的斜率存在时,由点差法可得 ,,即,.同理可得,从而可得结论.
(Ⅰ)由题意知,.
又∵,∴,,
∴椭圆的方程为.
(Ⅱ)易知,当直线的斜率不存在时,由椭圆的对称性知,中点在轴上,三点共线;
当直线的斜率存在时,设其斜率为,且设.
联立方程得相减得,
∴,
∴,,即,
∴.
同理可得,∴,所以三点共线.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位: )和年利润 (单位:千元)的影响.对近年的年宣传费 和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中 , .附:对于一组数据 , , , ,其回归直线 的斜率和截距的最小二乘法估计分别为 , .
(1)根据散点图判断, 与 在哪一个适宜作为年销售量 关于年宣传费 的回归方程类型?(给出判断即可,不必说明理由)
(2)根据1小问的判断结果及表中数据,建立 关于 的回归方程;
(3)已知这种产品的年利润 与 的关系为 .根据2小问的结果回答下列问题:
①2年宣传费 时,年销售量及年利润的预报值是多少?
②3年宣传费为何值时,年利润的预报值最大?
【题目】(本小题满分12分)
某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t | ||||||
男同学人数 | 7 | 11 | 15 | 12 | 2 | 1 |
女同学人数 | 8 | 9 | 17 | 13 | 3 | 2 |
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.
(i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为,求的分布列和数学期望