题目内容
15.在边长为1的正△ABC中,点P1,P2满足$\overrightarrow{B{P}_{1}}$=$\overrightarrow{{P}_{1}{P}_{2}}$=$\overrightarrow{{P}_{2}C}$,则$\overrightarrow{AB}$$•\overrightarrow{A{P}_{1}}$$+\overrightarrow{A{P}_{1}}$$•\overrightarrow{A{P}_{2}}$+$\overrightarrow{A{P}_{2}}$$•\overrightarrow{AC}$的值为$\frac{43}{18}$.分析 利用已知将$\overrightarrow{AB}$$•\overrightarrow{A{P}_{1}}$$+\overrightarrow{A{P}_{1}}$$•\overrightarrow{A{P}_{2}}$+$\overrightarrow{A{P}_{2}}$$•\overrightarrow{AC}$表示为$\overrightarrow{AB}•(\overrightarrow{AB}+\overrightarrow{B{P}_{1}})+(\overrightarrow{AB}+\overrightarrow{B{P}_{1}})(\overrightarrow{AB}+\overrightarrow{B{P}_{2}}$)+($\overrightarrow{AB}+\overrightarrow{B{P}_{2}})\overrightarrow{AC}$$•\overrightarrow{AC}$,利用等边三角形的性质解答.
解答 解:因为边长为1的正△ABC中,点P1,P2满足$\overrightarrow{B{P}_{1}}$=$\overrightarrow{{P}_{1}{P}_{2}}$=$\overrightarrow{{P}_{2}C}$,
则$\overrightarrow{AB}$$•\overrightarrow{A{P}_{1}}$$+\overrightarrow{A{P}_{1}}$$•\overrightarrow{A{P}_{2}}$+$\overrightarrow{A{P}_{2}}$$•\overrightarrow{AC}$=$\overrightarrow{AB}•(\overrightarrow{AB}+\overrightarrow{B{P}_{1}})+(\overrightarrow{AB}+\overrightarrow{B{P}_{1}})(\overrightarrow{AB}+\overrightarrow{B{P}_{2}}$)+($\overrightarrow{AB}+\overrightarrow{B{P}_{2}})\overrightarrow{AC}$$•\overrightarrow{AC}$
=${\overrightarrow{AB}}^{2}$$+\frac{1}{3}\overrightarrow{AB}•\overrightarrow{BC}$$+{\overrightarrow{AB}}^{2}$$+\frac{2}{3}\overrightarrow{AB}•\overrightarrow{BC}$$+\frac{1}{3}\overrightarrow{BC}•\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}•\frac{2}{3}\overrightarrow{BC}$$+\overrightarrow{AB}•\overrightarrow{AC}+\frac{2}{3}\overrightarrow{BC}•\overrightarrow{AC}$
=1-$\frac{1}{6}$+1-$\frac{1}{3}$-$\frac{1}{6}$+$\frac{2}{9}$+$\frac{1}{2}$+$\frac{1}{3}$
=$\frac{43}{18}$.
点评 本题考查了向量加法的三角形法则以及向量的数量积公式的运用;属于基础题.
A. | “若am2<bm2,则a<b”的逆命题为真命题 | |
B. | 命题p:?x∈[0,1],ex≥1;命题q:?x∈R,x2+x+1<0,则命题p∨q为真命题 | |
C. | “a>b”是“a2>b2”的充分不必要条件 | |
D. | 若f(x-1)为R上的偶函数,则函数f(x)的图象关于直线x=1对称 |
A. | -$\frac{2}{5}$i | B. | -$\frac{2}{5}$ | C. | $\frac{2}{5}$i | D. | $\frac{2}{5}$ |