题目内容

15.在边长为1的正△ABC中,点P1,P2满足$\overrightarrow{B{P}_{1}}$=$\overrightarrow{{P}_{1}{P}_{2}}$=$\overrightarrow{{P}_{2}C}$,则$\overrightarrow{AB}$$•\overrightarrow{A{P}_{1}}$$+\overrightarrow{A{P}_{1}}$$•\overrightarrow{A{P}_{2}}$+$\overrightarrow{A{P}_{2}}$$•\overrightarrow{AC}$的值为$\frac{43}{18}$.

分析 利用已知将$\overrightarrow{AB}$$•\overrightarrow{A{P}_{1}}$$+\overrightarrow{A{P}_{1}}$$•\overrightarrow{A{P}_{2}}$+$\overrightarrow{A{P}_{2}}$$•\overrightarrow{AC}$表示为$\overrightarrow{AB}•(\overrightarrow{AB}+\overrightarrow{B{P}_{1}})+(\overrightarrow{AB}+\overrightarrow{B{P}_{1}})(\overrightarrow{AB}+\overrightarrow{B{P}_{2}}$)+($\overrightarrow{AB}+\overrightarrow{B{P}_{2}})\overrightarrow{AC}$$•\overrightarrow{AC}$,利用等边三角形的性质解答.

解答 解:因为边长为1的正△ABC中,点P1,P2满足$\overrightarrow{B{P}_{1}}$=$\overrightarrow{{P}_{1}{P}_{2}}$=$\overrightarrow{{P}_{2}C}$,
则$\overrightarrow{AB}$$•\overrightarrow{A{P}_{1}}$$+\overrightarrow{A{P}_{1}}$$•\overrightarrow{A{P}_{2}}$+$\overrightarrow{A{P}_{2}}$$•\overrightarrow{AC}$=$\overrightarrow{AB}•(\overrightarrow{AB}+\overrightarrow{B{P}_{1}})+(\overrightarrow{AB}+\overrightarrow{B{P}_{1}})(\overrightarrow{AB}+\overrightarrow{B{P}_{2}}$)+($\overrightarrow{AB}+\overrightarrow{B{P}_{2}})\overrightarrow{AC}$$•\overrightarrow{AC}$
=${\overrightarrow{AB}}^{2}$$+\frac{1}{3}\overrightarrow{AB}•\overrightarrow{BC}$$+{\overrightarrow{AB}}^{2}$$+\frac{2}{3}\overrightarrow{AB}•\overrightarrow{BC}$$+\frac{1}{3}\overrightarrow{BC}•\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}•\frac{2}{3}\overrightarrow{BC}$$+\overrightarrow{AB}•\overrightarrow{AC}+\frac{2}{3}\overrightarrow{BC}•\overrightarrow{AC}$
=1-$\frac{1}{6}$+1-$\frac{1}{3}$-$\frac{1}{6}$+$\frac{2}{9}$+$\frac{1}{2}$+$\frac{1}{3}$
=$\frac{43}{18}$.

点评 本题考查了向量加法的三角形法则以及向量的数量积公式的运用;属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网