题目内容
【题目】已知函数f(x)=e2x﹣1(x2+ax﹣2a2+1).(a∈R)
(1)若a=1,求函数f(x)在(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.
【答案】
(1)解: a=1时,f(x)=e2x﹣1(x2+x﹣1),
f′(x)=e2x﹣1(2x2+4x﹣1),
∴f(1)=e,f′(1)=5e,
故切线方程是:y﹣e=5e(x﹣1),
即y=5ex﹣4e;
(2)解:f′(x)=e2x﹣1[2x2+(2a+2)x﹣4a2+a+2],
令f′(x)=0,得:2x2+(2a+2)x﹣4a2+a+2=0,
而△=4(9a2﹣3),
当△≤0时,即:﹣ ≤a≤ 时,f′(x)≥0恒成立,
∴f(x)在R递增.
【解析】(1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.
练习册系列答案
相关题目