ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿¼ºÖªÔ²F1£º(x+1)2 +y2= r2(1¡Ür¡Ü3)£¬Ô²F2£º(x-1)2+y2= (4-r)2£®
£¨1£©Ö¤Ã÷£ºÔ²F1ÓëÔ²F2Óй«¹²µã£¬²¢Ç󹫹²µãµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©ÒÑÖªµãQ(m£¬0)(m<0)£¬¹ýµãEбÂÊΪk(k¡Ù0£©µÄÖ±ÏßÓ루¢ñ£©Öй켣EÏཻÓÚM£¬NÁ½µã£¬¼ÇÖ±ÏßQMµÄбÂÊΪk1£¬Ö±ÏßQNµÄбÂÊΪk2£¬ÊÇ·ñ´æÔÚʵÊýmʹµÃk(k1+k2)Ϊ¶¨Öµ£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¡¾´ð°¸¡¿£¨1£©¼û½âÎö£¬£¨2£©´æÔÚ£¬
¡¾½âÎö¡¿
£¨1£©Çó³öÔ²ºÍÔ²µÄÔ²ÐĺͰ뾶£¬Í¨¹ýÔ²F1ÓëÔ²F2Óй«¹²µãÇó³öµÄ·¶Î§£¬´Ó¶ø¸ù¾Ý¿ÉµÃµãµÄ¹ì¼££¬½ø¶øÇó³ö·½³Ì£»
£¨2£©¹ýµãÇÒбÂÊΪµÄÖ±Ïß·½³ÌΪ£¬É裬£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬¸ù¾ÝΤ´ï¶¨ÀíÒÔ¼°£¬£¬¿ÉµÃ£¬¸ù¾ÝÆäΪ¶¨Öµ£¬ÔòÓУ¬½ø¶ø¿ÉµÃ½á¹û.
£¨1£©ÒòΪ£¬£¬ËùÒÔ£¬
ÒòΪԲµÄ°ë¾¶Îª£¬Ô²µÄ°ë¾¶Îª£¬
ÓÖÒòΪ£¬ËùÒÔ£¬¼´£¬
ËùÒÔÔ²ÓëÔ²Óй«¹²µã£¬
É蹫¹²µãΪ£¬Òò´Ë£¬ËùÒÔµãµÄ¹ì¼£ÊÇÒÔ£¬Îª½¹µãµÄÍÖÔ²£¬
ËùÒÔ£¬£¬£¬
¼´¹ì¼£µÄ·½³ÌΪ£»
£¨2£©¹ýµãÇÒбÂÊΪµÄÖ±Ïß·½³ÌΪ£¬É裬
ÓÉÏûÈ¥µÃµ½£¬
Ôò£¬£¬ ¢Ù
ÒòΪ£¬£¬
ËùÒÔ
£¬
½«¢Ùʽ´úÈëÕûÀíµÃ
ÒòΪ£¬
ËùÒÔµ±Ê±£¬¼´Ê±£¬.
¼´´æÔÚʵÊýʹµÃ.