ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C1£º
+
=1(a£¾b£¾0)µÄÓÒ½¹µãÓëÅ×ÎïÏßC2£ºy2=4xµÄ½¹µãFÖغϣ¬µãMÊÇC1ÓëC2ÔÚµÚÒ»ÏóÏÞÄڵĽ»µã£¬ÇÒ|MF|=
£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÉèÅ×ÎïÏßµÄ×¼ÏßÓëxÖá½»ÓÚµãE£¬¹ýEÈÎ×÷Ò»ÌõÖ±Ïßl£¬lÓëÍÖÔ²C1µÄÁ½¸ö½»µã¼ÇΪA£¬B£®ÎÊ£ºÔÚÍÖÔ²µÄ³¤ÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹
•
Ϊ¶¨Öµ£¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê¼°ÏàÓ¦µÄ¶¨Öµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
x2 |
a2 |
y2 |
b2 |
5 |
3 |
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÉèÅ×ÎïÏßµÄ×¼ÏßÓëxÖá½»ÓÚµãE£¬¹ýEÈÎ×÷Ò»ÌõÖ±Ïßl£¬lÓëÍÖÔ²C1µÄÁ½¸ö½»µã¼ÇΪA£¬B£®ÎÊ£ºÔÚÍÖÔ²µÄ³¤ÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹
PA |
PB |
·ÖÎö£º£¨1£©ÓÉÅ×ÎïÏߵĶ¨Òå½áºÏ|MF|=
Çó³öMµÄ×ø±ê£¬°ÑMµÄ×ø±ê´úÈëÍÖÔ²·½³Ì£¬½áºÏÒÑÖªÌõ¼þÇóµÃÍÖÔ²·½³Ì£»
£¨2£©Çó³öEµãµÄ×ø±ê£¬¼ÙÉè´æÔÚµãP£¨m£¬0£©£¨-2¡Üm¡Ü2£©Âú×ãÒªÇó£®Çó³öÖ±ÏßlµÄбÂʲ»´æÔÚºÍбÂÊΪ0ʱµÄ
•
Öµ£¬ÓÉÁ½ÖµÏàµÈÇó³ömµÄÖµ£¬È»ºó·ÖÇé¿öÖ¤Ã÷ËùÇóµÄPµã·ûºÏÒªÇó£®
5 |
3 |
£¨2£©Çó³öEµãµÄ×ø±ê£¬¼ÙÉè´æÔÚµãP£¨m£¬0£©£¨-2¡Üm¡Ü2£©Âú×ãÒªÇó£®Çó³öÖ±ÏßlµÄбÂʲ»´æÔÚºÍбÂÊΪ0ʱµÄ
PA |
PB |
½â´ð£º½â£º£¨1£©ÉèM£¨xM£¬yM£©£¬¡ßÅ×ÎïÏßC2£ºy2=4x£¬¡àÆä×¼Ïß·½³ÌΪx=-1£¬
ÓÉÅ×ÎïÏߵĶ¨ÒåµÃ£ºxM+1=
£¬µÃ£ºxM=
£¬´úÈëÅ×ÎïÏß·½³ÌµÃ£ºyM=
£¬
¡àM(
£¬
)£®
½«´Ëµã´úÈëÍÖÔ²·½³Ì£¬µÃ
+
=1£¬
ÓÖÍÖÔ²µÄ°ë½¹¾àc=1£¬a2=b2+c2£¬½âµÃ£ºa2=4£¬b2=3£®
¡àÍÖÔ²µÄ·½³ÌΪ£º
+
=1£»
£¨2£©Å×ÎïÏßµÄ×¼ÏßÓëxÖá½»µãE£¨-1£¬0£©£¬¼ÙÉè´æÔÚµãP£¨m£¬0£©£¨-2¡Üm¡Ü2£©Âú×ãÒªÇó£®
µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬ÇóµÃÁ½½»µãΪ(-1£¬
)£¬(-1£¬-
)£¬´Ëʱ
•
=(-1-m)2-
£»
µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬ÇóµÃÁ½½»µãΪ£¨-2£¬0£©£¬£¨2£¬0£©£¬´Ëʱ
•
=(-2-m)(2-m)£®
ÓÉ(-1-m)2-
=(-2-m)(2-m)£¬½âµÃm=-
£®
ÏÂÃæÖ¤Ã÷P(-
£¬0)·ûºÏÒªÇó£®
µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬
•
=m2-4=-
£®
µ±Ö±ÏßlµÄбÂʲ»Îª0ʱ£¬ÉèlµÄ·½³ÌΪx=ny-1£¬ÓÉ
µÃ£¬£¨3n2+4£©y2-6ny-9=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòy1+y2=
£¬y1y2=
£®
´Ëʱ
•
=(x1+
)(x2+
)+y1y2=(ny1-1+
)(ny2-1+
)+y1y2
=
(y1+y2)+(n2+1)y1y2+
=
+
=-
£®
¹Ê´æÔÚµãP(-
£¬0)·ûºÏÒªÇ󣬶ÔÓ¦µÄ¶¨ÖµÎª-
£®
ÓÉÅ×ÎïÏߵĶ¨ÒåµÃ£ºxM+1=
5 |
3 |
2 |
3 |
2
| ||
3 |
¡àM(
2 |
3 |
2
| ||
3 |
½«´Ëµã´úÈëÍÖÔ²·½³Ì£¬µÃ
4 |
9a2 |
8 |
3b2 |
ÓÖÍÖÔ²µÄ°ë½¹¾àc=1£¬a2=b2+c2£¬½âµÃ£ºa2=4£¬b2=3£®
¡àÍÖÔ²µÄ·½³ÌΪ£º
x2 |
4 |
y2 |
3 |
£¨2£©Å×ÎïÏßµÄ×¼ÏßÓëxÖá½»µãE£¨-1£¬0£©£¬¼ÙÉè´æÔÚµãP£¨m£¬0£©£¨-2¡Üm¡Ü2£©Âú×ãÒªÇó£®
µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬ÇóµÃÁ½½»µãΪ(-1£¬
3 |
2 |
3 |
2 |
PA |
PB |
9 |
4 |
µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬ÇóµÃÁ½½»µãΪ£¨-2£¬0£©£¬£¨2£¬0£©£¬´Ëʱ
PA |
PB |
ÓÉ(-1-m)2-
9 |
4 |
11 |
8 |
ÏÂÃæÖ¤Ã÷P(-
11 |
8 |
µ±Ö±ÏßlµÄбÂÊΪ0ʱ£¬
PA |
PB |
135 |
64 |
µ±Ö±ÏßlµÄбÂʲ»Îª0ʱ£¬ÉèlµÄ·½³ÌΪx=ny-1£¬ÓÉ
|
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòy1+y2=
6n |
3n2+4 |
-9 |
3n2+4 |
´Ëʱ
PA |
PB |
11 |
8 |
11 |
8 |
11 |
8 |
11 |
8 |
=
3n |
8 |
9 |
64 |
-9(3n2+4) |
4(3n2+4) |
9 |
64 |
135 |
64 |
¹Ê´æÔÚµãP(-
11 |
8 |
135 |
64 |
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëԲ׶ÇúÏßµÄλÖùØϵ£¬ÑµÁ·ÁËÉè¶ø²»ÇóµÄ½âÌâ˼Ïë·½·¨ºÍ·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨£¬ÑµÁ·ÁËÌØÖµÑéÖ¤·¨£¬¿¼²éÁËѧÉúÁé»î´¦ÀíÎÊÌâµÄÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£¬ÊǸ߿¼ÊÔ¾íÖеÄѹÖáÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿