ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²C1£ºx2 |
a2 |
y2 |
b2 |
| ||
2 |
2 |
£¨¢ñ£©ÇóÍÖÔ²C1µÄ·½³Ì£®
£¨¢ò£©ÉèÍÖÔ²C1µÄ×ó½¹µãΪF1£¬ÓÒ½¹µãΪF2£¬Ö±Ïßl1¹ýµãF1£¬ÇÒ´¹Ö±ÓÚÍÖÔ²µÄ³¤Öᣬ¶¯Ö±Ïßl2´¹Ö±l1ÓÚµãP£¬Ï߶ÎPF2µÄ´¹Ö±Æ½·ÖÏß½»l2ÓÚµãM£¬ÇóµãMµÄ¹ì¼£C2µÄ·½³Ì£»
£¨¢ó£©ÈôAC¡¢BDΪÍÖÔ²C1µÄÁ½ÌõÏ໥´¹Ö±µÄÏÒ£¬´¹×ãΪÓÒ½¹µãF2£¬ÇóËıßÐÎABCDµÄÃæ»ýµÄ×îСֵ£®
·ÖÎö£º£¨¢ñ£©ÓÉÌâÉèÌõ¼þÖªa2=2b2£¬ÔÙÓÉÖ±Ïßl£ºx-y+2=0ÓëÔ²x2+y2=b2ÏàÇУ¬Öª
=b£¬ÓÉ´Ë¿ÉÇó³öÍÖÔ²C1µÄ·½³Ì£®
£¨¢ò£©ÓÉMP=MF2£¬Öª¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-2µÄ¾àÀëµÈÓÚËüµ½¶¨µãF2£¨2£¬0£©µÄ¾àÀ룬ÓÉ´Ë¿ÉÇó³öµãMµÄ¹ì¼£C2µÄ·½³Ì£®
£¨¢ó£©µ±Ö±ÏßACµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßACµÄбÂÊΪk£¬A£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬ÔòÖ±ÏßACµÄ·½³ÌΪy=k£¨x-2£©£¬ÁªÁ¢
+
=1¼°y=k£¨x-2£©µÃ£¨1+2k2£©x2-8k2x+8k2-8=0£®È»ºóÀûÓøùÓëϵÊýµÄ¹Øϵ½áºÏÌâÉèÌõ¼þ½øÐÐÇó½â£®
2
| ||
2 |
£¨¢ò£©ÓÉMP=MF2£¬Öª¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-2µÄ¾àÀëµÈÓÚËüµ½¶¨µãF2£¨2£¬0£©µÄ¾àÀ룬ÓÉ´Ë¿ÉÇó³öµãMµÄ¹ì¼£C2µÄ·½³Ì£®
£¨¢ó£©µ±Ö±ÏßACµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßACµÄбÂÊΪk£¬A£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬ÔòÖ±ÏßACµÄ·½³ÌΪy=k£¨x-2£©£¬ÁªÁ¢
x2 |
8 |
y2 |
4 |
½â´ð£º½â£º£¨¢ñ£©¡ße=
£¬¡àe2=
=
=
£¬¡àa2=2b2
¡ßÖ±Ïßl£ºx-y+2=0ÓëÔ²x2+y2=b2ÏàÇÐ
¡à
=b£¬¡àb=2£¬b2=4£¬¡àa2=8£¬
¡àÍÖÔ²C1µÄ·½³ÌÊÇ
+
=1£¨3·Ö£©
£¨¢ò£©¡ßMP=MF2£¬
¡à¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-2µÄ¾àÀëµÈÓÚËüµ½¶¨µãF2£¨2£¬0£©µÄ¾àÀ룬
¡à¶¯µãMµÄ¹ì¼£CÊÇÒÔl1Ϊ׼Ïߣ¬F2Ϊ½¹µãµÄÅ×ÎïÏß
¡àµãMµÄ¹ì¼£C2µÄ·½³ÌΪy2=8x£¨6·Ö£©
£¨¢ó£©µ±Ö±ÏßACµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßACµÄбÂÊΪk£¬
A£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬ÔòÖ±ÏßACµÄ·½³ÌΪy=k£¨x-2£©
ÁªÁ¢
+
=1¼°y=k£¨x-2£©µÃ£¨1+2k2£©x2-8k2x+8k2-8=0
ËùÒÔx1+x2=
£¬x1x2=
|AC|=
=
=
£®£¨8·Ö£©
ÓÉÓÚÖ±ÏßBDµÄбÂÊΪ-
£¬ÓÃ-
´ú»»ÉÏʽÖеÄk¿ÉµÃ|BD|=
¡ßAC¡ÍBD£¬
¡àËıßÐÎABCDµÄÃæ»ýΪS=
|AC|•|BD|=
..£¨10·Ö£©
ÓÉ£¨1+2k2£©£¨k2+2£©¡Ü[
]2=[
]2
ËùÒÔS¡Ý
£¬µ±1+2k2=k2+2ʱ£¬¼´k=¡À1ʱȡµÈºÅ£®£¨11·Ö£©
Ò×Öª£¬µ±Ö±ÏßACµÄбÂʲ»´æÔÚ»òбÂÊΪÁãʱ£¬ËıßÐÎABCDµÄÃæ»ýS=8
×ÛÉϿɵã¬ËıßÐÎABCDÃæ»ýµÄ×îСֵΪ
£¨12·Ö£©
| ||
2 |
c2 |
a2 |
a2-b2 |
a2 |
1 |
2 |
¡ßÖ±Ïßl£ºx-y+2=0ÓëÔ²x2+y2=b2ÏàÇÐ
¡à
2
| ||
2 |
¡àÍÖÔ²C1µÄ·½³ÌÊÇ
x2 |
8 |
y2 |
4 |
£¨¢ò£©¡ßMP=MF2£¬
¡à¶¯µãMµ½¶¨Ö±Ïßl1£ºx=-2µÄ¾àÀëµÈÓÚËüµ½¶¨µãF2£¨2£¬0£©µÄ¾àÀ룬
¡à¶¯µãMµÄ¹ì¼£CÊÇÒÔl1Ϊ׼Ïߣ¬F2Ϊ½¹µãµÄÅ×ÎïÏß
¡àµãMµÄ¹ì¼£C2µÄ·½³ÌΪy2=8x£¨6·Ö£©
£¨¢ó£©µ±Ö±ÏßACµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßACµÄбÂÊΪk£¬
A£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬ÔòÖ±ÏßACµÄ·½³ÌΪy=k£¨x-2£©
ÁªÁ¢
x2 |
8 |
y2 |
4 |
ËùÒÔx1+x2=
8k2 |
1+2k2 |
8k2-8 |
1+2k2 |
|AC|=
(1+k2)(x1-x2)2 |
(1+k2)[(x1+x2)2-4x1x2] |
| ||
1+2k2 |
ÓÉÓÚÖ±ÏßBDµÄбÂÊΪ-
1 |
k |
1 |
k |
| ||
k2+2 |
¡ßAC¡ÍBD£¬
¡àËıßÐÎABCDµÄÃæ»ýΪS=
1 |
2 |
16(1+k2)2 |
(k2+2)(1+2k2) |
ÓÉ£¨1+2k2£©£¨k2+2£©¡Ü[
(1+2k2)+(k2+2) |
2 |
3(k2+1) |
2 |
ËùÒÔS¡Ý
64 |
9 |
Ò×Öª£¬µ±Ö±ÏßACµÄбÂʲ»´æÔÚ»òбÂÊΪÁãʱ£¬ËıßÐÎABCDµÄÃæ»ýS=8
×ÛÉϿɵã¬ËıßÐÎABCDÃæ»ýµÄ×îСֵΪ
64 |
9 |
µãÆÀ£º±¾Ì⿼²éԲ׶ÇúÏߺÍÖ±ÏßµÄλÖùØϵºÍ×ÛºÏÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨ÀíµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿