题目内容

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点分别为F1,F2,O为双曲线的中心,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,且圆I与x轴相切于点A,过F2作直线PI的垂线,垂足为B,若e为双曲线的离心率,则(  )
A.|OB|=|OA|B.|OA|=e|OB|
C.|OB|=e|OA|D.|OB|与|OA|大小关系不确定

分析 根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=2a,转化为|AF1|-|AF2|=2a,从而求得点H的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在三角形F1CF2中,利用中位线定理得出OB,从而解决问题.

解答 解:F1(-c,0)、F2(c,0),内切圆与x轴的切点是点A
∵|PF1|-|PF2|=2a,及圆的切线长定理知,
|AF1|-|AF2|=2a,设内切圆的圆心横坐标为x,
则|(x+c)-(c-x)|=2a
∴x=a;
|OA|=a,
在△PCF2中,由题意得,F2B⊥PI于B,延长交F1F2于点C,利用△PCB≌△PF2B,可知PC=PF2
∴在三角形F1CF2中,有:
OB=$\frac{1}{2}$CF1=$\frac{1}{2}$(PF1-PC)=$\frac{1}{2}$(PF1-PF2)=$\frac{1}{2}$×2a=a.
∴|OB|=|OA|.
故选:A.

点评 本题考查双曲线的定义、切线长定理.解答的关键是充分利用平面几何的性质,如三角形内心的性质等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网