题目内容

已知f(x)=(a-2)x2+2(a-2)x-4.
(1)当a=3时,解关于x的不等式f(x)≥-1;
(2)若f(x)<0对一切x∈R恒成立,试确定实数a的取值范围.
(1)当a=3时,f(x)=x2+2x-4,
∴f(x)≥-1,即x2+2x-4≥-1,即x2+2x-3≥0,
∴x≤-3或x≥1,
∴关于x的不等式f(x)≥-1的解集为{x|x≤-3或x≥1};
(2)f(x)<0对一切x∈R恒成立,即(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,
①当a-2=0,即a=2时,-4<0对x∈R恒成立,
∴a=2满足题意;
②当
a<0
△=22(a-2)2-4×(-4)×(a-2)<0
,解得-2<a<0.
综合①②,可得-2<a<0或a=2,
故若f(x)<0对一切x∈R恒成立,实数a的取值范围为(-2,0)∪{2}.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网