题目内容
【题目】如图,在平面直角坐标系xOy中,F1 , F2分别为椭圆 + =1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.
(1)若点C的坐标为( , ),且BF2= ,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.
【答案】
(1)解:∵C的坐标为( , ),
∴ ,即 ,
∵ ,
∴a2=( )2=2,即b2=1,
则椭圆的方程为 +y2=1
(2)解:设F1(﹣c,0),F2(c,0),
∵B(0,b),
∴直线BF2:y=﹣ x+b,代入椭圆方程 + =1(a>b>0)得( )x2﹣ =0,
解得x=0,或x= ,
∵A( , ),且A,C关于x轴对称,
∴C( ,﹣ ),
则 =﹣ = ,
∵F1C⊥AB,
∴ ×( )=﹣1,
由b2=a2﹣c2得 ,
即e=
【解析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.
【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
分组 | 频数 | 频率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | ||
[90,100] | 14 | 0.28 |
合计 | 1.00 |
如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.