题目内容
【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2,AC=BC,F 是AB上一点,且AF=AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知:,
(1)求证:AD⊥平面BCE;
(2)求三棱锥A﹣CFD的体积.
【答案】(1)见解析;(2) .
【解析】
(1)根据直径所对的圆周角为直角,得到AD⊥BD,结合CE⊥平面ADB得AD⊥CE,所以AD⊥平面BCE;
(2)由已知条件求出F到AD的距离等于E到AD的距离,由VA﹣CFD=VC﹣AFD,利用等积法能求出三棱锥A﹣CFD的体积.
(1)证明:依题AD⊥BD,
∵CE⊥平面ABD,∴CE⊥AD,
∵BD∩CE=E,
∴AD⊥平面BCE.
(2)由(2)知AD∥EF,AD⊥ED,
且ED=BD﹣BE=1,
∴F到AD的距离等于E到AD的距离为1.
∴S△FAD==.
∵CE⊥平面ABD,
∴VA﹣CFD=VC﹣AFD===.
【题目】已知函数f(x)=(3﹣a)x﹣2+a﹣2lnx(a∈R)
(1)若函数y=f(x)在区间(1,3)上单调,求a的取值范围;
(2)若函数g(x)=f(x)﹣x在(0, )上无零点,求a的最小值.
【题目】在120°的二面角α--β的两个面内分别有点A,B,A∈α,B∈β,A,B到棱l的距离AC,BD分别是2,4,且线段AB=10.
(1)求C,D间的距离;
(2)求直线AB与平面β所成角的正弦值.
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程=bx+a,其中b=-20,a=-b
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入—成本)