题目内容
已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<
(I)若cos
cosφ-sin
sinφ=0,求φ的值;
(Ⅱ)在(I)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于
,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位所对应的函数是偶函数.
π |
2 |
(I)若cos
π |
4 |
3π |
4 |
(Ⅱ)在(I)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于
π |
3 |
(I)由cos
cosφ-sin
sinφ=0得cos
cosφ-sin
sinφ=0
即cos(
+φ)=0又|φ|<
,∴φ=
(Ⅱ)解法一:由(I)得,f(x)=sin(ωx+
)依题意,
=
又T=
,故ω=3,∴f(x)=sin(3x+
)
函数f(x)的图象向左平移m个单位后所对应的函数为g(x)=sin[3(x+m)+
]g(x)是偶函数当且仅当3m+
=kπ+
(k∈Z)即m=
+
(k∈Z)从而,最小正实数m=
解法二:由(I)得,f(x)=sin(ωx+
),依题意,
=
又T=
,故ω=3,∴f(x)=sin(3x+
)
函数f(x)的图象向左平移m个单位后所对应的函数为g(x)=sin[3(x+m)+
],g(x)是偶函数当且仅当g(-x)=g(x)对x∈R恒成立
亦即sin(-3x+3m+
)=sin(3x+3m+
)对x∈R恒成立.∴sin(-3x)cos(3m+
)+cos(-3x)sin(3m+
)=sin3xcos(3m+
)+cos3xsin(3m+
)
即2sin3xcos(3m+
)=0对x∈R恒成立.∴cos(3m+
)=0
故3m+
=kπ+
(k∈Z)∴m=
+
(k∈Z)从而,最小正实数m=
π |
4 |
3π |
4 |
π |
4 |
π |
4 |
即cos(
π |
4 |
π |
2 |
π |
4 |
(Ⅱ)解法一:由(I)得,f(x)=sin(ωx+
π |
4 |
T |
2 |
π |
3 |
2π |
ω |
π |
4 |
函数f(x)的图象向左平移m个单位后所对应的函数为g(x)=sin[3(x+m)+
π |
4 |
π |
4 |
π |
2 |
kπ |
3 |
π |
12 |
π |
12 |
解法二:由(I)得,f(x)=sin(ωx+
π |
4 |
T |
2 |
π |
3 |
2π |
ω |
π |
4 |
函数f(x)的图象向左平移m个单位后所对应的函数为g(x)=sin[3(x+m)+
π |
4 |
亦即sin(-3x+3m+
π |
4 |
π |
4 |
π |
4 |
π |
4 |
π |
4 |
π |
4 |
即2sin3xcos(3m+
π |
4 |
π |
4 |
故3m+
π |
4 |
π |
2 |
kπ |
3 |
π |
12 |
π |
12 |
练习册系列答案
相关题目