ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=ax+bsinx£¬µ±x=
ʱ£¬È¡µÃ¼«Ð¡Öµ
-
£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©¶ÔÈÎÒâx1£¬x2¡Ê[-
£¬
]£¬²»µÈʽf£¨x1£©-f£¨x2£©¡Ümºã³ÉÁ¢£¬ÊÔÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©ÉèÖ±Ïßl£ºy=g£¨x£©£¬ÇúÏßS£ºy=F£¨x£©£¬ÈôÖ±ÏßlÓëÇúÏßSͬʱÂú×ãÏÂÁÐÁ½¸öÌõ¼þ£º¢ÙÖ±ÏßlÓëÇúÏßSÏàÇÐÇÒÖÁÉÙÓÐÁ½¸öÇе㣻¢Ú¶ÔÈÎÒâx¡ÊR¶¼ÓÐg£¨x£©¡ÝF£¨x£©£¬Ôò³ÆÖ±ÏßlÓëÇúÏßSµÄ¡°ÉϼÐÏß¡±£®¹Û²ìÏÂͼ£º
¸ù¾ÝÉÏͼ£¬ÊÔÍƲâÇúÏßS£ºy=mx-nsinx£¨n£¾0£©µÄ¡°ÉϼÐÏß¡±µÄ·½³Ì£¬²¢×÷Êʵ±µÄ˵Ã÷£®
¦Ð |
3 |
¦Ð |
3 |
3 |
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©¶ÔÈÎÒâx1£¬x2¡Ê[-
¦Ð |
3 |
¦Ð |
3 |
£¨3£©ÉèÖ±Ïßl£ºy=g£¨x£©£¬ÇúÏßS£ºy=F£¨x£©£¬ÈôÖ±ÏßlÓëÇúÏßSͬʱÂú×ãÏÂÁÐÁ½¸öÌõ¼þ£º¢ÙÖ±ÏßlÓëÇúÏßSÏàÇÐÇÒÖÁÉÙÓÐÁ½¸öÇе㣻¢Ú¶ÔÈÎÒâx¡ÊR¶¼ÓÐg£¨x£©¡ÝF£¨x£©£¬Ôò³ÆÖ±ÏßlÓëÇúÏßSµÄ¡°ÉϼÐÏß¡±£®¹Û²ìÏÂͼ£º
¸ù¾ÝÉÏͼ£¬ÊÔÍƲâÇúÏßS£ºy=mx-nsinx£¨n£¾0£©µÄ¡°ÉϼÐÏß¡±µÄ·½³Ì£¬²¢×÷Êʵ±µÄ˵Ã÷£®
·ÖÎö£º£¨1£©Çóµ¼Êýf¡ä£¨x£©£¬ÓÉÒÑÖª¿ÉµÃf¡ä£¨
£©=0£¬f£¨
£©=
-
£¬¿ÉµÃ·½³Ì×飬½â³öa£¬bºó×¢Òâ¼ìÑ飻
£¨2£©¶ÔÈÎÒâx1£¬x2¡Ê[-
£¬
]£¬²»µÈʽf£¨x1£©-f£¨x2£©¡Ümºã³ÉÁ¢£¬µÈ¼ÛÓÚf£¨x£©max-f£¨x£©min¡Üm£¬ÀûÓõ¼Êý¼´¿ÉÇóµÃº¯Êýf£¨x£©ÔÚ[-
£¬
]ÉϵÄ×î´óÖµ¡¢×îСֵ£»
£¨3£©¸ù¾ÝͼÏó¿É²Â²â¡°ÉϼÐÏß¡±·½³ÌΪ£ºy=mx+n£¬¸ù¾Ý¡°ÉϼÐÏß¡±µÄ¶¨Òå½øÐÐ˵Ã÷¼´¿É£»
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
3 |
3 |
£¨2£©¶ÔÈÎÒâx1£¬x2¡Ê[-
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
3 |
£¨3£©¸ù¾ÝͼÏó¿É²Â²â¡°ÉϼÐÏß¡±·½³ÌΪ£ºy=mx+n£¬¸ù¾Ý¡°ÉϼÐÏß¡±µÄ¶¨Òå½øÐÐ˵Ã÷¼´¿É£»
½â´ð£º½â£º£¨1£©¡ßf£¨x£©=ax+bsinx£¬¡àf¡ä£¨x£©=a+bcosx£¬
¶øÓÉÒÑÖªµÃ£º
£¬½âµÃa=1£¬b=-2£¬
´Ëʱf£¨x£©=x-2sinx£¬¡àf¡ä£¨x£©=1-2cosx£¬
µ±x¡Ê£¨0£¬
£©Ê±£¬f¡ä£¨x£©£¼0£¬µ±¡Ê£¨
£¬
£©Ê±£¬f¡ä£¨x£©£¾0£¬
¡àµ±x=
ʱ£¬f£¨x£©È¡µÃ¼«Ð¡Öµ
-
£¬¼´a=1£¬b=-2·ûºÏÌâÒ⣻
£¨2£©¶ÔÈÎÒâx1£¬x2¡Ê[-
£¬
]£¬²»µÈʽf£¨x1£©-f£¨x2£©¡Ümºã³ÉÁ¢£¬µÈ¼ÛÓÚf£¨x£©max-f£¨x£©min¡Üm£¬
ÓÉ£¨1£©Öªf£¨x£©=x-2sinx£¬f¡ä£¨x£©=1-2cosx£¬
µ±x¡Ê[-
£¬
]ʱ£¬f¡ä£¨x£©¡Ü0£¬ËùÒÔf£¨x£©ÔÚ[-
£¬
]Éϵݼõ£¬
f(x)min=f(
)=
-
£¬f(x)max=f(-
)=-
+
£¬
f£¨x£©max-f£¨x£©min=2
-
£¬
ËùÒÔm¡Ý2
-
£»
£¨3£©¸ù¾ÝͼÏó²Â²â¡°ÉϼÐÏß¡±·½³ÌΪ£ºy=mx+n£¬ËµÃ÷ÈçÏ£º
ÓÉy¡ä£¨x£©=m-ncosx=m£¬µÃcosx=0£¬
µ±x=-
ʱ£¬cosx=0£¬´Ëʱy1=mx+n=-
+n£¬y2=mx-nsinx=-
+n£¬
¡ày1=y2£¬
¡à£¨-
£¬-
+n£©ÊÇÖ±ÏßlÓëÇúÏßSµÄÇе㣻
µ±x=
ʱ£¬cosx=0£¬´Ëʱy1=mx+n=
+n£¬y2=mx-nsinx=
+n£¬
¡ày1=y2£¬
¡à£¨
£¬
+n£©Ò²ÊÇÖ±ÏßlÓëÇúÏßSµÄÇе㣻
¡àÖ±ÏßlÓëÇúÏßSÏàÇÐÇÒÖÁÉÙÓÐÁ½¸öÇе㣬
¶ÔÈÎÒâx¡ÊR£¬£¨mx+n£©-£¨mx-nsinx£©=n£¨1+sinx£©¡Ý0£¬mx+n¡Ýmx-nsinx£¬
Òò´ËÖ±Ïßl£ºy=mx+nΪÇúÏßS£ºy=mx-nsinx¡°ÉϼÐÏß¡±
¶øÓÉÒÑÖªµÃ£º
|
´Ëʱf£¨x£©=x-2sinx£¬¡àf¡ä£¨x£©=1-2cosx£¬
µ±x¡Ê£¨0£¬
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
2 |
¡àµ±x=
¦Ð |
3 |
¦Ð |
3 |
3 |
£¨2£©¶ÔÈÎÒâx1£¬x2¡Ê[-
¦Ð |
3 |
¦Ð |
3 |
ÓÉ£¨1£©Öªf£¨x£©=x-2sinx£¬f¡ä£¨x£©=1-2cosx£¬
µ±x¡Ê[-
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
3 |
¦Ð |
3 |
f(x)min=f(
¦Ð |
3 |
¦Ð |
3 |
3 |
¦Ð |
3 |
¦Ð |
3 |
3 |
f£¨x£©max-f£¨x£©min=2
3 |
2¦Ð |
3 |
ËùÒÔm¡Ý2
3 |
2¦Ð |
3 |
£¨3£©¸ù¾ÝͼÏó²Â²â¡°ÉϼÐÏß¡±·½³ÌΪ£ºy=mx+n£¬ËµÃ÷ÈçÏ£º
ÓÉy¡ä£¨x£©=m-ncosx=m£¬µÃcosx=0£¬
µ±x=-
¦Ð |
2 |
m¦Ð |
2 |
m¦Ð |
2 |
¡ày1=y2£¬
¡à£¨-
¦Ð |
2 |
m¦Ð |
2 |
µ±x=
3¦Ð |
2 |
3m¦Ð |
2 |
3m¦Ð |
2 |
¡ày1=y2£¬
¡à£¨
3¦Ð |
2 |
3m¦Ð |
2 |
¡àÖ±ÏßlÓëÇúÏßSÏàÇÐÇÒÖÁÉÙÓÐÁ½¸öÇе㣬
¶ÔÈÎÒâx¡ÊR£¬£¨mx+n£©-£¨mx-nsinx£©=n£¨1+sinx£©¡Ý0£¬mx+n¡Ýmx-nsinx£¬
Òò´ËÖ±Ïßl£ºy=mx+nΪÇúÏßS£ºy=mx-nsinx¡°ÉϼÐÏß¡±
µãÆÀ£º±¾Ì⿼²éÀûÓõ¼ÊýÑо¿ÇúÏßÉÏijµãÇÐÏß·½³Ì£¬£¨1£©ÎÊÖª£¬ÇóµÃa=1£¬b=-2ºó£¬Ðè·ÖÎöÑéÖ¤¡°x=
ʱ£¬f£¨x£©È¡µÃ¼«Ð¡Öµ¡±£¬Ñ§ÉúÒ×Íü¼ÇÕâÒ»²½£»·ÖÎö£¨-
£¬-
+n£©Ó루
£¬
+n£©ÊÇÖ±ÏßlÓëÇúÏßSµÄÇе㣬¼´Âú×ã¢ÙÊÇÄѵ㣬¿¼²é×ۺϷÖÎöÓëÍÆÀíµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
¦Ð |
3 |
¦Ð |
2 |
m¦Ð |
2 |
3¦Ð |
2 |
3m |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿