题目内容
设数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n∈N*)
(1)若bn=an+1-2an,求bn;
(2)若cn=
,求{cn}的前6项和T6;
(3)若dn=
,求数列{dn}的通项.
(1)若bn=an+1-2an,求bn;
(2)若cn=
1 |
an+1-2an |
(3)若dn=
an |
2n |
解(1)∵a1=1,Sn+1=4an+2(n∈N*)
∴Sn+2=4an+1+2,
∴an+2=Sn+2-Sn+1=4(an+1-an),
∴an+2-2an+1=2(an+1-an),
即bn+1=2bn,
∴{bn}是公比为2的等比数列,且b1=a2-2a1…(3分)
∵a1=1,a2+a1=S2,即a2+a1=4a1+2,
∴a2=3a1+2=5,
∴b1=5-2=3
∴bn=3•2n-1…(5分)
(2)cn=
=
=
,
∴c1=
,
∴cn=
•(
)n-1,
∴{cn}是首项为
,公比为
的等比数列…(8分)
∴T6=
=
(1-
)=
…(10分)
(3)∵dn=
,bn=3•2n-1,
∴dn+1-dn=
-
=
=
=
=
,
∴{dn}是等差数列
dn=
-
.…(14分)
∴Sn+2=4an+1+2,
∴an+2=Sn+2-Sn+1=4(an+1-an),
∴an+2-2an+1=2(an+1-an),
即bn+1=2bn,
∴{bn}是公比为2的等比数列,且b1=a2-2a1…(3分)
∵a1=1,a2+a1=S2,即a2+a1=4a1+2,
∴a2=3a1+2=5,
∴b1=5-2=3
∴bn=3•2n-1…(5分)
(2)cn=
1 |
an+1-2an |
1 |
bn |
1 |
3•2n-1 |
∴c1=
1 |
3 |
∴cn=
1 |
3 |
1 |
2 |
∴{cn}是首项为
1 |
3 |
1 |
2 |
∴T6=
| ||||
1-
|
2 |
3 |
1 |
64 |
61 |
96 |
(3)∵dn=
an |
2n |
∴dn+1-dn=
an+1 |
2n+1 |
an |
2n |
an+1-2an |
2n+1 |
bn |
2n+1 |
3×3n-1 |
2n+1 |
3 |
4 |
∴{dn}是等差数列
dn=
3n |
4 |
1 |
4 |
练习册系列答案
相关题目