题目内容
已知数列{an}的前n项和为Sn=n2+n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=(
)an+n,求{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=(
1 |
2 |
(I)当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
当n=1时,a1=2也适合上式,
∴an=2n.
(II)由(I)知,bn=(
)an+n=(
)n+n.
∴Tn=
+(
)2++(
)n+(1+2+…+n)=
+
=
[1-(
)n]+
.
当n=1时,a1=2也适合上式,
∴an=2n.
(II)由(I)知,bn=(
1 |
2 |
1 |
4 |
∴Tn=
1 |
4 |
1 |
4 |
1 |
4 |
| ||||
1-
|
n(n+1) |
2 |
=
1 |
3 |
1 |
4 |
n(n+1) |
2 |
练习册系列答案
相关题目