题目内容
【题目】如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为_______.
【答案】
【解析】
设BC的中点为D,连结AD,过点P作PO平面ABC,角AD于点O,则A0=PO=R=2,AD=3,AB=BC=,由此能求出挖去的正三棱锥的体积,得到答案.
由题意,某中螺帽是由一个半径为R=2的半球体挖去一个正三棱锥P-ABC构成的几何体,
该正三棱锥P-ABC的底面三角形ABC内接于半球底面的大圆,顶点P在半球面上,
设BC的中点为D,连结AD,过点P作PO平面ABC,交AD于点O,
则AO=PO=R=2,AD=3,AB=BC=,
所以,
所以挖去的正三棱锥的体积为.
【题目】2018年,南昌市召开了全球VR产业大会,为了增强对青少年VR知识的普及,某中学举行了一次普及VR知识讲座,并从参加讲座的男生中随机抽取了50人,女生中随机抽取了70人参加VR知识测试,成绩分成优秀和非优秀两类,统计两类成绩人数得到如下的列联表:
优秀 | 非优秀 | 总计 | |
男生 | a | 35 | 50 |
女生 | 30 | d | 70 |
总计 | 45 | 75 | 120 |
(1)确定a,d的值;
(2)试判断能否有90%的把握认为VR知识的测试成绩优秀与否与性别有关;
(3)为了宣传普及VR知识,从该校测试成绩获得优秀的同学中按性别采用分层抽样的方法,随机选出6名组成宣传普及小组.现从这6人中随机抽取2名到校外宣传,求“到校外宣传的2名同学中至少有1名是男生”的概率.
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】某地最近十年粮食需求量逐年上升,下表是部分统计数据:
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量/万吨 | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年需求量与年份之间的线性回归方程;
(2)利用(1)中所求出的线性回归方程预测该地2018年的粮食需求量.
参考公式:,.
【题目】随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数一直居高不下,对人体的呼吸系统造成了严重的影响.现调查了某市名居民的工作场所和呼吸系统健康,得到列联表如下:
室外工作 | 室内工作 | 合计 | |
有呼吸系统疾病 | |||
无呼吸系统疾病 | |||
合计 |
(Ⅰ)补全列联表;
(Ⅱ)你是否有的把握认为感染呼吸系统疾病与工作场所有关;
(Ⅲ)现采用分层抽样从室内工作的居民中抽取一个容量为的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.
临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |