题目内容
(本小题满分16分)已知椭圆:的离心率为,直线
:与椭圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直与椭圆的长轴,动直线垂直于直线于点,线段的垂直平分线交于点,求点的轨迹的方程.
【答案】
解:(1)因为,所以,
椭圆的方程可设为·····································4分
与直线方程联立,消去,可得,
因为直线与椭圆相切,所以,
又因为,所以,
所以,椭圆的方程为;····································8分
(2)由题意可知,,
又为点到直线的距离,·······································10分
所以,点到直线的距离与到点的距离相等,即点的轨迹是以直线为准线,
点为焦点的抛物线,···········································14分
因为直线的方程为,点的坐标为,
所以,点的轨迹的方程为;································16分
【解析】略
练习册系列答案
相关题目