题目内容

(2010江苏卷)18、(本小题满分16分)

在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M,其中m>0,

(1)设动点P满足,求点P的轨迹;

(2)设,求点T的坐标;

(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。

 [解析] 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。满分16分。

(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。

,得 化简得

故所求点P的轨迹为直线

(2)将分别代入椭圆方程,以及得:M(2,)、N(

直线MTA方程为:,即

直线NTB 方程为:,即

联立方程组,解得:

所以点T的坐标为

(3)点T的坐标为

直线MTA方程为:,即

直线NTB 方程为:,即

分别与椭圆联立方程组,同时考虑到

解得:

(方法一)当时,直线MN方程为:

 令,解得:。此时必过点D(1,0);

时,直线MN方程为:,与x轴交点为D(1,0)。

所以直线MN必过x轴上的一定点D(1,0)。

(方法二)若,则由,得

此时直线MN的方程为,过点D(1,0)。

,则,直线MD的斜率

直线ND的斜率,得,所以直线MN过D点。

因此,直线MN必过轴上的点(1,0)。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网