题目内容

(本小题满分16分)     本题请注意换算单位

某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。

(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;

(总开发费用=总建筑费用+购地费用)

(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?

 

【答案】

(1);(2) 30层.

【解析】

试题分析:(1)由已知,写字楼最下面一层的总建筑费用为:

(元)(万元),

从第二层开始,每层的建筑总费用比其下面一层多:

(元)(万元),

写字楼从下到上各层的总建筑费用构成以800为首项,20 为公差的等差数列

所以函数表达式为:

   ;…………8分

(2)由(1)知写字楼每平方米平均开发费用为:

   

(元)

当且仅当,即时等号成立.

答:该写字楼建为30层时,每平方米平均开发费用最低. …………16分

考点:本题考查数列的应用;函数模型的选择与应用;基本不等式在最值问题中的应用.

点评:本题考查等差数列模型的构建、基本不等式的运用及利用数学知识解决实际问题的能力,属于中档题。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网