题目内容
(本小题满分16分)
已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为
(Ⅰ)求f()的值;
(Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
【答案】
(Ⅰ)
(Ⅱ)
【解析】解:(Ⅰ)f(x)=
=
=2sin(-)
因为 f(x)为偶函数,
所以 对x∈R,f(-x)=f(x)恒成立,
因此 sin(--)=sin(-).
即-sincos(-)+cossin(-)=sincos(-)+cossin(-),
整理得 sincos(-)=0.因为 >0,且x∈R,所以 cos(-)=0.
又因为 0<<π,故 -=.所以 f(x)=2sin(+)=2cos.
由题意得
故 f(x)=2cos2x.
因为 (注:本题有更简洁解法)
(Ⅱ)将f(x)的图象向右平移个个单位后,得到的图象,
再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到的图象.
当 2kπ≤≤2 kπ+ π (k∈Z),
即 4kπ+≤≤x≤4kπ+ (k∈Z)时,g(x)单调递减.
因此g(x)的单调递减区间为 (k∈Z)
练习册系列答案
相关题目