题目内容
【题目】若函数f(x)=x2﹣ 在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围( )
A.[1,+∞)
B.[1, )
C.[1,+2)
D.
【答案】B
【解析】解:∵f(x)的定义域为(0,+∞),f′(x)=2x﹣ = ,
f′(x)>0得,x> ;f′(x)<0得,0<x< ;
∵函数f(x)定义域内的一个子区间(k﹣1,k+1)内不是单调函数,∴0≤k﹣1< <k+1,∴1≤k< .
所以答案是:B.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
练习册系列答案
相关题目
【题目】设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系表:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 5 | 7.5 | 5 | 2.5 | 5 | 7.5 | 5 | 2.5 | 5 |
经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )
A.
B.
C.
D.