题目内容
【题目】已知函数f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期为π.
(1)求函数f(x)的单调增区间;
(2)将函数f(x)的图象向左平移 个单位长度,再向上平移1个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在 上的最值.
【答案】
(1)解:由题意得:
f(x)=2sinωxcosωx+2 sin2ωx﹣
=sin2ωx﹣ cos2ωx
=2sin(2ωx﹣ )
由周期为π,得ω=1,得f(x)=2sin(2x﹣ )
由正弦函数的单调递增区间得
2kπ﹣ ≤2x﹣ ≤2kπ+ ,得kπ﹣ ≤x≤kπ+ ,k∈Z,
所以函数f(x)的单调递增区间是[kπ﹣ ,kπ+ ],k∈Z
(2)解:将函数f(x)的图象向左平移 个单位,再向上平移1个单位,
得到y=2sin2x+1的图象,所以g(x)=2sin2x+1
因为 ,所以 ,故2sinx∈[﹣1,2],
所以函数g(x)的最大值为3,最小值为0.
【解析】(1)根据二倍角的三角函数公式与辅助角公式化简得f(x)=2sin(2ωx﹣ ),利用周期公式算出ω=1,得函数解析式为f(x)=2sin(2x﹣ ).再由正弦函数单调区间的公式,解关于x的不等式即可得到函数f(x)的单调增区间;(2)求出g(x)的解析式,根据函数的单调性求出函数在闭区间的最值即可.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
【题目】为调查某地区老年人是否需要志愿者提供帮助,从该地区调查了500位老人,结果如下:
性别 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(2)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?提供帮助的老年人的比例?说明理由.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
附:
【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量,获得本场比赛胜利,最终人机大战总比分定格1:4.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为X。若每次抽取的结果是相互独立的,求X的分布列,期望 E(X) 和方差 D(X) .