题目内容
【题目】下列四种说法中,
①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知幂函数f(x)=xα的图象经过点(2, ),则f(4)的值等于 ;
④已知向量 =(3,﹣4), =(2,1),则向量 在向量 方向上的投影是 .
说法错误的个数是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:①命题“存在x∈R,x2﹣x>0”的否定是“对于任意x∈R,x2﹣x≤0”,故①不正确;
②命题“p且q为真”,则命题p、q均为真,所以“p或q为真”.反之“p或q为真”,则p、q不见得都真,所以不一定有“p且q为真”所以命题“p且q为真”是“p或q为真”的充分不必要条件,故命题②不正确;
③由幂函数f(x)=xα的图象经过点(2, ),所以2α= ,所以α=﹣ ,所以幂函数为f(x)= ,所以f(4)= ,所以命题③正确;
④∵向量 =(3,﹣4), =(2,1),∴ =3×2+(﹣4)×1=2,| |= ,∴向量 在向量 的方向上的投影为: = ,故④不正确.
故选:C.
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
【题目】近年来,武汉市出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.武汉市环保部门就是否赞成禁放烟花爆竹,对400位老年人和中青年市民进行了随机问卷调查,结果如下表:
赞成禁放 | 不赞成禁放 | 合计 | |
老年人 | 60 | 140 | 200 |
中青年人 | 80 | 120 | 200 |
合计 | 140 | 260 | 400 |
附:K2=
P(k2>k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
(1)有多大的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关?请说明理由;
(2)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解他们春节期间在烟花爆竹上消费的情况.假设一位老年人花费500元,一位中青年人花费1000元,用X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.