题目内容
11.如图,在坡度一定的山坡上的一点A处,测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进75米到达B点,再次测量得其斜度为30°,假设建筑物高50米,设山坡对于水平面的斜度为θ,则cosθ=$\frac{3}{4}$.分析 在三角形ABC中,由∠CBD-∠CAB求出∠ACB的度数,再由AB的长,以及sin∠CAB与sin∠ACB的值,利用正弦定理表示出BC,在三角形DBC中,由由CD,∠CBD=30°与∠CDB=90°+θ,利用正弦定理列出关系式,将各自的值代入利用诱导公式化简,即可求出cosθ的值.
解答 解:在△ABC中,AB=75m,∠CAB=15°,∠ACB=30°-15°=15°,
∴BC=75m,
在△DBC中,CD=50m,∠CBD=30°,∠CDB=90°+θ,
∴由正弦定理得:$\frac{50}{sin30°}=\frac{75}{sin(90°+θ)}$,
解得:sin(90°+θ)=cosθ=$\frac{3}{4}$,
故答案为:$\frac{3}{4}$.
点评 此题考查了正弦定理,两角和与差的正弦函数公式,诱导公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目
19.在样本的频率分布直方图中,共有7个小长方形,若中间一个小长方形的面积等于其它6个小长方形的面积和的$\frac{1}{4}$,且样本容量为80,则中间一组的频数为( )
A. | 0.25 | B. | 0.5 | C. | 20 | D. | 16 |
16.设全集U={1,2,3,4,5,6},集合A={1,2,3,},B={2,4,5},则∁U(A∪B)=( )
A. | {2} | B. | {6} | C. | {1,3,4,5,6} | D. | {1,3,4,5} |
3.下列命题错误的是( )
A. | 命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题是“若方程x2+x-m=0没有实数根,则m≤0” | |
B. | “x=1”是“x2-3x+2=0”的充分不必要条件 | |
C. | 命题“若xy=0,则x,y中至少有一个为0”的否命题是“若xy≠0,则x,y中至多有一个为0” | |
D. | 对于命题p:?x∈R,使x2+x+1<0;则¬p:?x∈R,均有x2+x+1≥0 |
20.将函数y=sin(x+$\frac{π}{6}$)图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再把所得图象向右平移$\frac{π}{6}$个单位后得到函数y=f(x)的图象,则函数y=f(x)的图象( )
A. | 关于点(0,0)对称 | B. | 关于点($\frac{π}{4}$,0)对称 | ||
C. | 关于直线x=$\frac{π}{3}$对称 | D. | 关于直线x=π对称 |