ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾¹ýµãM£¨1£¬$\frac{\sqrt{6}}{2}$£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÈôP£¨-1£¬$\frac{1}{2}$£©ÊÇÍÖÔ²ÄÚÒ»µã£¬ÍÖÔ²µÄÄÚ½ÓÌÝÐÎABCD£¬£¨AB¡ÎCD£©µÄ¶Ô½ÇÏßACÓëBD½»ÓÚµãP£¬ÉèÖ±ÏßABÔÚyÖáÉϵĽؾàΪm£¬¼Çf£¨m£©=S¡÷PAB£¬Çóf£¨m£©µÄ±í´ïʽ
£¨3£©Çóg£¨m£©=[f£¨m£©]2-$\frac{2}{3}$m3+4m-3µÄ×î´óÖµ£®
·ÖÎö £¨1£©Í¨¹ý½«µãM£¨1£¬$\frac{\sqrt{6}}{2}$£©´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ýÉèÖ±ÏßAB¡¢CDµÄ·½³Ì£¬²¢·Ö±ðÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨Àí¡¢A¡¢C¡¢PÈýµã¹²Ïß¡¢B¡¢D¡¢PÈýµã¹²Ïß¡¢Á½µã¼ä¾àÀ빫ʽ¡¢Èý½ÇÐÎÃæ»ý¹«Ê½¼ÆËã¼´µÃ½áÂÛ£»
£¨3£©ÀûÓûù±¾²»µÈʽ¼ÆËã¼´µÃ½áÂÛ£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾¹ýµãM£¨1£¬$\frac{\sqrt{6}}{2}$£©£¬
¡à$\frac{1}{{a}^{2}}+\frac{6}{4{b}^{2}}=1$£¬
ÓÖ¡ßÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬
¡àe=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{2}}{2}$£¬¼´£ºa2=2b2£¬
¡àa2=4£¬b2=2£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»
£¨2£©ÓÉÒÑÖªµÃAB¡¢CD²»´¹Ö±ÓÚxÖᣨ·ñÔòÓɶԳÆÐÔ£¬µãPÔÚxÖáÉÏ£©£¬
ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m£¬Ö±ÏßCDµÄ·½³ÌΪy=kx+n£¨m¡Ùn£©£¬
½«y=kx+m´úÈë$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$µÃ£º£¨1+2k2£©x2+4kmx+2£¨m2-2£©=0£¬
¡÷=4£¨8k2-2m2+4£©£¾0£¬
ÉèµãA£¨xA£¬yA£©£¬B£¨xB£¬yB£©£¬ÓÉΤ´ï¶¨ÀíµÃ$\left\{\begin{array}{l}{{x}_{A}+{x}_{B}=-\frac{4km}{1+2{k}^{2}}}\\{{x}_{A}{•x}_{B}=\frac{2£¨{m}^{2}-2£©}{1+2{k}^{2}}}\end{array}\right.$£¬
ͬÀíÉèµãC£¨xC£¬yC£©£¬D£¨xD£¬yD£©£¬ÓÉΤ´ï¶¨ÀíµÃ$\left\{\begin{array}{l}{{x}_{C}+{x}_{D}=-\frac{4kn}{1+2{k}^{2}}}\\{{x}_{C}•{x}_{D}=\frac{2£¨{n}^{2}-2£©}{1+2{k}^{2}}}\end{array}\right.$£¬
ÓÉA¡¢C¡¢PÈýµã¹²Ïß¿ÉÖª£º£¨-1-xA£©•£¨$\frac{1}{2}$-yC£©=£¨-1-xC£©•£¨$\frac{1}{2}$-yA£©£¬
»¯¼òµÃ£º-xA+2yC+2xAyC=-xC+2yA+2xCyA£¬
ͬÀíB¡¢D¡¢PÈýµã¹²Ïß¿ÉÖª£º-xB+2yD+2xByD=-xD+2yB+2xDyB£¬
Á½Ê½Ïà¼Ó½áºÏAB¡¢CDµÄ·½³Ìy=kx+m£¬y=kx+n£¨m¡Ùn£©µÃ£º
-£¨xA+xB£©+2k£¨xC+xD£©+2xByD+4n+2xA£¨kxC+n£©+2xB£¨kxD+n£©
=-£¨xC+xD£©+2k£¨xA+xB£©+2xByD+4m+2xC£¨kxA+m£©+2xD£¨kxB+m£©-£¨xA+xB£©+2k£¨xC+xD£©+4n+2n£¨xA+xB£©
=-£¨xC+xD£©+2k£¨xA+xB£©+4m+2m£¨xC+xD£©£¬
ÀûÓÃn£¨xA+xB£©=m£¨xC+xD£©µÃ£º£¨1+2k£©£¨xC+xD£©-£¨xA+xB£©+4£¨n-m£©=0£¬
$\frac{4k£¨1+2k£©£¨m-n£©}{1+2{k}^{2}}$+4£¨n-m£©=0£¬
ÓÉm¡Ùn¿ÉÖªk=1£¬
ÓÉ¡÷¼°Ö±Ïß²»¹ýµãP£¨-1£¬$\frac{1}{2}$£©µÃ£º-$\sqrt{6}$£¼m£¼$\sqrt{6}$ÇÒm¡Ù$\frac{3}{2}$£¬
ÓÖµãP£¨-1£¬$\frac{1}{2}$£©µ½Ö±Ïßx-y+m=0µÄ¾àÀëÊÇd=$\frac{|2m-3|}{2\sqrt{2}}$£¬
¹Êf£¨m£©=S¡÷PAB=$\frac{1}{2}¡Á\sqrt{2}¡Á$$\frac{\sqrt{48-8{m}^{2}}}{3}$¡Á$\frac{|2m-3|}{2\sqrt{2}}$=$\frac{\sqrt{12-2{m}^{2}}}{6}$|2m-3|£¨-$\sqrt{6}$£¼m£¼$\sqrt{6}$ÇÒm¡Ù$\frac{3}{2}$£©£»
£¨3£©g£¨m£©=[f£¨m£©]2-$\frac{2}{3}$m3+4m-3
=-$\frac{2}{9}$m4+$\frac{5}{6}$m2=$\frac{1}{72}$•4m2£¨15-4m2£©
¡Ü$\frac{1}{72}$[$\frac{4{m}^{2}+£¨15-4{m}^{2}£©}{2}$]2=$\frac{25}{32}$£¬
µ±ÇÒ½öµ±4m2=15-4m2¼´m=¡À$\frac{\sqrt{15}}{4}$¡Ê£¨-$\sqrt{6}$£¬$\frac{3}{2}$£©¡È£¨$\frac{3}{2}$£¬$\sqrt{6}$£©Ê±£¬ÉÏʽµÈºÅ³ÉÁ¢£¬
¹Êg£¨m£©µÄ×î´óֵΪ$\frac{25}{32}$£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬Éæ¼°»ù±¾²»µÈʽ¡¢Î¤´ï¶¨Àí¡¢Á½µã¼ä¾àÀ빫ʽµÈ»ù´¡ÖªÊ¶£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
A£® | 1Ìõ | B£® | 2Ìõ | C£® | 3Ìõ | D£® | 4Ìõ |