题目内容
【题目】中国古代教育要求学生掌握“六艺”,即“礼、乐、射、御、书、数”.某校为弘扬中国传统文化,举行有关“六艺”的知识竞赛.甲、乙、丙三位同学进行了决赛.决赛规则:决赛共分场,每场比赛的第一名、第二名、第三名的得分分别为,选手最后得分为各场得分之和,决赛结果是甲最后得分为分,乙和丙最后得分都为分,且乙在其中一场比赛中获得第一名,现有下列说法:
①每场比赛第一名得分分;
②甲可能有一场比赛获得第二名;
③乙有四场比赛获得第三名;
④丙可能有一场比赛获得第一名.
则以上说法中正确的序号是______.
【答案】③
【解析】
根据总分得到,根据甲得分得到,计算,,,得到每个选手的得分情况,得到答案.
根据题意:,故,,
甲不是全部得到第一,故,故,即,故,,.
故甲有5个第一,0个第二,1个第三;乙有1个第一,1个第二,4个第三;丙有0个第一,5个第二,1个第三.
对比选项知:③正确.
故答案为:③.
【题目】千百年来,人们一直在通过不同的方式传递信息.在古代,烽火狼烟、飞鸽传书、快马驿站等通信方式被人们广泛传知;第二次工业革命后,科技的进步带动了电讯事业的发展,电报电话的发明让通信领域发生了翻天覆地的变化;之后,计算机和互联网的出现则.使得“千里眼”“顺风耳”变为现实……此时此刻,5G的到来即将给人们的生活带来颠覆性的变革,“5G领先”一方面是源于我国项层设计的宏观布局,另一方面则来自于政府高度重视、企业积极抢滩、企业层面的科技创新能力和先发优势.某科技创新公司基于领先技术的支持,丰富的移动互联网应用等明显优势,随着技术的不断完善,该公司的5G经济收入在短期内逐月攀升,业内预测,该创新公司在第1个月至第7个月的5G经济收入y(单位:百万元)关于月份x的数据如下表:
时间(月份) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
收入(百万元) | 6 | 11 | 21 | 34 | 66 | 101 | 196 |
根据以上数据绘制散点图:
(1)为了更充分运用大数据、人工智能、5G等技术,公司需要派出员工实地考察检测产品性能和使用状况,公司领导要从报名的五名科技人员A、B、C、D、E中随机抽取3个人前往,则A、B同时被抽到的概率为多少?
(2)根据散点图判断,与(a,b,c,d均为大于零的常数)哪一个适宜作为5G经济收入y关于月份x的回归方程类型?(给出判断即可,不必说明理由)并根据你判断结果及表中的数据,求出y关于x的回归方程;
(3)请你预测该公司8月份的5G经济收入.
参考数据:
462 | 10.78 | 2711 | 50.12 | 2.82 | 3.47 |
其中设,
参考公式:
对于一组具有线性相关系的数据(,2,3,…,n),其回归直线的斜率和截距的最小二乘估计公式分别为:,.