题目内容
【题目】刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这个等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,估计的值为( )
A.B.C.D.
【答案】C
【解析】
将一个单位圆平均分成120个扇形,则每个扇形的圆心角度数均为,由这120个扇形对应的等腰三角形的面积之和近似于单位圆的面积,能求出的近似值.
解:将一个单位圆平均分成120个扇形,
则每个扇形的圆心角度数均为,
这120个扇形对应的等腰三角形的面积之和近似于单位圆的面积,
,
故选:C.
【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元).这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据y(单位:十亿元),绘制如表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
编号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
销售额y | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根据以上数据绘制散点图,如图所示
(1)根据散点图判断,与哪一个适宜作为销售额关于的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及如表中的数据,建立关于的回归方程,并预测2020年天猫双十一销售额;(注:数据保留小数点后一位)
(3)把销售超过100(十亿元)的年份叫“畅销年”,把销售额超过200(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取2个,求至少取到一个“狂欢年”的概率.
参考数据:
参考公式:
对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别,.