题目内容
【题目】已知函数f(x)=excos x-x.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间上的最大值和最小值.
【答案】(1)y=1;(2)最大值为1,最小值为.
【解析】(1)因为f(x)=excos x-x,
所以f′(x)=ex(cos x-sin x)-1,f′(0)=0.
又因为 f(0)=1,
所以曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(2)设h(x)=ex(cos x-sin x)-1,
则h′(x)=ex(cos x-sin x-sin x-cos x)=-2exsin x.
当x∈时,h′(x)<0,
所以h(x)在区间上单调递减.
所以对任意x∈有h(x)<h(0)=0,
即f′(x)<0.
所以函数f(x)在区间上单调递减.
因此f(x)在区间上的最大值为f(0)=1,最小值为f=-.
练习册系列答案
相关题目
【题目】某机构通过对某企业2018年的前三个季度生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:
3 | 6 | 9 | |
241 | 244 | 229 |
(1)根据上表数据,请从下列三个函数中选取一个恰当的函数描述与x的变化关系,并说明理由:,,
(2)利用(1)中选择的函数:
①估计月利润最大的是第几个月,并求出该月的利润;
②预估年底12月份的利润是多少?