题目内容

已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值.
(2)用定义证明f(x)在(-∞,+∞)上为减函数.
(3)若对于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范围.
(1) a=1,b=1   (2)见解析   (3) k<-
(1)∵f(x)为R上的奇函数,∴f(0)=0,b=1.
又f(-1)=-f(1),得a=1.
经检验a=1,b=1符合题意.
(2)任取x1,x2∈R,且x1<x2,
则f(x1)-f(x2)=-
=
=.
∵x1<x2,∴->0,
又∵(+1)(+1)>0,
∴f(x1)-f(x2)>0,
∴f(x)在(-∞,+∞)上为减函数.
(3)∵t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,
∴f(t2-2t)<-f(2t2-k).
∵f(x)为奇函数,∴f(t2-2t)<f(k-2t2),
∵f(x)为减函数,∴t2-2t>k-2t2,
即k<3t2-2t恒成立,而3t2-2t=3(t-)2-≥-,∴k<-.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网