题目内容
【题目】已知椭圆与抛物线y2=x有一个相同的焦点,且该椭圆的离心率为.
(1)求椭圆的标准方程;
(2)过点P(0,1)的直线与该椭圆交于A,B两点,O为坐标原点,若,求△AOB的面积.
【答案】(1);(2)
【解析】试题分析:(1)先求椭圆焦点得c,再根据离心率列方程组可得a=2,b2=2 (2)将OP视为底,根据三角形面积公式得S= |OP|·|x1-x2|,再联立直线方程与椭圆方程,利用韦达定理化简得|x1-x2|,最后根据解出k,代入解得△AOB的面积.
试题解析:解:(1)依题意,设椭圆的标准方程为+=1(a>b>0),
由题意可得c=,又e==,∴a=2.
∴b2=a2-c2=2,
∴椭圆的标准方程为+=1.
(2)设A(x1,y1),B(x2,y2),
由=2,得
设直线AB的方程为y=kx+1,代入椭圆方程整理,得
(2k2+1)x2+4kx-2=0,
∴x1+x2=-,x1·x2=-.
将x1=-2x2代入上式整理可得, 2=,
解得k2=.
∴△AOB的面积S=|OP|·|x1-x2|
==·=.