题目内容

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点,若椭圆C上存在点P,使线段PF1的垂直平分线过点F2,则椭圆离心率的取值范围是(  )
A.(0,
1
3
]
B.(
1
2
2
3
C.[
1
3
,1)
D.[
1
3
2
3
因为设F1,F2分别是椭圆C:
x2
a2
+
x2
b2
=1(a>b>0)的焦点,若椭圆C上存在点P,使线段PF1的垂直平分线过点F2
则以点F2为圆心2c为半径的圆与椭圆有交点,由椭圆的性质可知只需满足a-c≤2c,解得
c
a
1
3
,所以椭圆离心率的取值范围是[
1
3
,1).
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网