题目内容
【题目】在x∈[ ,2]上,函数f(x)=x2+px+q与g(x)= + 在同一点取得相同的最小值,那么f(x)在x∈[ ,2]上的最大值是( )
A.
B.4
C.8
D.
【答案】B
【解析】解:∵在x∈[ ,2]上,g(x)= + ≥2 =3,当且仅当x=1时等号成立 ∴在x∈[ ,2]上,函数f(x)=x2+px+q在x=1时取到最小值3,
∴ 解得p=﹣2,q=4
∴f(x)=x2﹣2x+4=(x﹣1)2+4,
∴当x=2时取到最大值4
故选B
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值),还要掌握基本不等式在最值问题中的应用(用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”)的相关知识才是答题的关键.
练习册系列答案
相关题目
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.