题目内容

【题目】已知椭圆)和圆分别是椭圆的左、右两焦点,过且倾斜角为)的动直线交椭圆两点,交圆两点(如图所示,点轴上方).当时,弦的长为.

(1)求圆与椭圆的方程;

(2)若依次成等差数列,求直线的方程.

【答案】1)椭圆的方程为:;(2)直线的方程为:.

【解析】

试题(1)求圆与椭圆的方程,其实只要求的值,而本身满足,只要再建立一个关于的等式即可求出的值,这可从直线被圆截得的弦长为考虑,运用垂径定理建立关于等式;(2)求直线的方程,因为直线已经经过,只要再求一点或斜率,即可得到方程,因为成等差数列,结合椭圆的定义,可求得的长,从而可求得的坐标,最终可求得直线的方程.

试题解析:(1)取的中点,连,由,知

,即,从而

椭圆的方程为:.

2)设,又 的长成等差数列,

,由解得 .

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网