题目内容
【题目】若函数的图象经过点,且相邻的两条对称轴之间的距离为.
(1)求函数的解析式;
(2)若将函数的图象向右平移个单位后得到函数的图象,当时,的值域.
【答案】(1);(2).
【解析】
(1)根据函数图象两条相邻对称轴之间的距离可求出周期,并利用周期公式可求出的值,再将点代入函数的解析式,结合的范围,可求出的值,由此可得出函数的解析式;
(2)根据图象的平移规律得出,由,计算出的取值范围,结合正弦函数的性质可求出函数的值域.
(1)函数图象的两条相邻对称轴之间的距离为,
记的周期为,则,
又,,.
函数的图象经过点,,
则,.
函数的解析式为;
(2)将函数的图象向右平移个单位后得到函数的图象,
由(1)得,,
函数的解析式为.
当时,,则.
综上,当时,函数的值域为.
练习册系列答案
相关题目
【题目】已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好在抛物线的准线上.
求椭圆的标准方程;
点,在椭圆上,是椭圆上位于直线两侧的动点当运动时,满足,试问直线的斜率是否为定值,请说明理由.
【题目】某港口的水深(米)是时间(,单位:小时)的函数,下面是每天时间与水深的关系表:
经过长期观测,可近似的看成是函数
(1)根据以上数据,求出的解析式;
(2)若船舶航行时,水深至少要米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?