题目内容

如图,在三棱柱ABCA1B1C1中,侧面AA1C1C⊥底面ABCAA1A1CAC=2,ABBCABBCOAC中点.
 
(1)证明:A1O⊥平面ABC
(2)若E是线段A1B上一点,且满足VEBCC1·VABCA1B1C1,求A1E的长度.
(1)见解析(2)
(1)证明:∵AA1A1CAC=2,且OAC中点,
A1OAC,又∵侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABCACA1O?平面A1AC
A1O⊥平面ABC.
(2)∵VEBCC1VABCA1B1C1VA1BCC1,∴BEBA1,即A1EA1B.
连接OB,在Rt△A1OB中,A1OOBA1OBO=1,故A1B=2,则A1E的长度为.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网