题目内容

给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
(1) ; (2) 垂直.

试题分析:(1)由“椭圆C的一个焦点为,其短轴上的一个端点到F的距离为”知:从而可得椭圆的标准方程和“准圆”的方程;
(2)分两种情况讨论:①当中有一条直线斜率不存在;②直线斜率都存在.
对于①可直接求出直线的方程并判断其是不互相垂直;
对于②设经过准圆上点与椭圆只有一个公共点的直线为
与椭圆方程联立组成方程组消去得到关于的方程:
化简整理得:
而直线的斜率正是方程的两个根,从而
试题解析:(1)
椭圆方程为
准圆方程为
(2)①当中有一条无斜率时,不妨设无斜率,
因为与椭圆只有一个共公点,则其方程为
方程为时,此时与准圆交于点
此时经过点(或)且与椭圆只有一个公共眯的直线是(或
(或),显然直线垂直;
同理可证方程为时,直线也垂直.
②当都有斜率时,设点其中
设经过点与椭圆只有一个公共点的直线为
则由消去,得

化简整理得:
因为,所以有
的斜率分别为,因为与椭圆只有一个公共点
所以满足上述方程
所以,即垂直,
综合①②知, 垂直.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网