题目内容
【题目】《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.
【答案】
【解析】
由已知可得△AEF、△PEF均为直角三角形,且AF=2,由基本不等式可得当AE=EF=2时,△AEF的面积最大,然后由棱锥体积公式可求得体积最大值.
由PA⊥平面ABC,得PA⊥BC,
又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,则BC⊥AE,
又PB⊥AE,则AE⊥平面PBC,
于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC,得PC⊥平面AEF,
∴△AEF、△PEF均为直角三角形,由已知得AF=2,
而S△AEF=(AE2+EF2)=AF2=2,
当且仅当AE=EF=2时,取“=”,此时△AEF的面积最大,
三棱锥P﹣AEF的体积的最大值为:
VP﹣AEF===.
故答案为:
练习册系列答案
相关题目