题目内容
【题目】设数列{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,已知S3=7,且a1+3,3a2 , a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{an+log2an}(n∈N*)的前10项和T10 .
【答案】
(1)解:由题意可得: ,∴14﹣a2=6a2,解得a2=2,
∴ =14,又q>1,解得q=2,a1=1,
∴ .
(2)解: ,
∴an+log2an=2n﹣1+n﹣1.
,
∴ .
【解析】(1)利用等差数列与等比数列的通项公式即可得出.(2)利用等差数列与等比数列的求和公式即可得出.
【考点精析】利用数列的前n项和和数列的通项公式对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
练习册系列答案
相关题目