题目内容
7.若函f(x)是定义域为R的奇函数,且f(x)在(0,+∞)上有一个零点.则f(x)的零点个数为( )A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据定义域为R的奇函数图象过零点,且函数图象关于原点对称,可得答案.
解答 解:∵函数f(x)是定义域为R的奇函数,
∴f(0)=0,
又∵f(x)在(0,+∞)上有一个零点.
∴f(x)在(-∞,0)上有一个零点.
综上所述,f(x)的零点个数为3个,
故选:C.
点评 本题考查的知识点是函数零点,函数的奇偶性,难度不大,属于基础题.
练习册系列答案
相关题目
15.函数f(x)=$\left\{\begin{array}{l}a{x^2}+x-1(x>2)\\ ax-1(x≤2)\end{array}$是R上的单调递减函数,则实数a的取值范围是( )
A. | -$\frac{1}{4}$≤a<0 | B. | a≤-$\frac{1}{4}$ | C. | -1≤a≤-$\frac{1}{4}$ | D. | a≤-1 |
19.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额),如下表:
(1)求y关于x的回归方程 $\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)用所求的回归方程预测该地区2015年的人民币储蓄存款.
注:$\left\{\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ a=\overline y-b\overline x\end{array}\right.$.
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(2)用所求的回归方程预测该地区2015年的人民币储蓄存款.
注:$\left\{\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ a=\overline y-b\overline x\end{array}\right.$.
17.某程序框图如图所示,则输出的结果S等于( )
A. | 26 | B. | 57 | C. | 60 | D. | 61 |