题目内容
已知函数,是大于零的常数.
(Ⅰ)当时,求的极值;
(Ⅱ)若函数在区间上为单调递增,求实数的取值范围;
(Ⅲ)证明:曲线上存在一点,使得曲线上总有两点,且成立.
(I)极大值,极小值.
(Ⅱ)当函数在区间上为单调递增时,或.
(Ⅲ)曲线上存在一点,使得曲线上总有两点,且成立 .
解析试题分析:(I)求极值一般遵循“求导数、求驻点、讨论区间的导数值正负、计算极值”.
(Ⅱ)函数在区间上为单调递增,因此,其导函数为正数恒成立,据此建立的不等式求解.
应注意结合的不同取值情况加以讨论.
(Ⅲ)通过确定函数的极大值、极小值点,, 并确定的中点.
设是图象任意一点,由,可得,
根据,可知点在曲线上,作出结论.
本题难度较大,关键是能否认识到极大值、极小值点,的中点即为所求.
试题解析:(I),,
当时,,
令得.
在分别单调递增、单调递减、单调递增,
于是,当时,函数有极大值,时,有极小值.
------4分
(Ⅱ),若函数在区间上为单调递增,
则在上恒成立,
当,即时,由得;
当,即时,,无解;
当,即时,由得.
综上,当函数在区间上为单调递增时,或. 10分
(Ⅲ),,
令,得,
在区间,,上分别单调递增,单调递减,单调递增,
于是当时,有极大值;
当时,有极小值.
记,, 的中点,
设是图象任意一点,由,得,
因为
,
由此可知点
练习册系列答案
相关题目