ÌâÄ¿ÄÚÈÝ
15£®ËÞÖÝÊÐÔÚ¾Ù°ìÆæʯÎÄ»¯ÒÕÊõ½ÚÆڼ䣬ΪÁËÌáÉýÓë»áÕßµÄÉÍʯƷ棬×éί»á°ÑƸÇëµÄ6λר¼ÒËæ»úµÄ°²ÅÅÔÚ¡°Ææʯ¹«Ô°¡±Óë¡°ÆæʯչÀÀÖÐÐÄ¡±Á½¸ö²»Í¬µØµã×÷Ö¸µ¼£¬Ã¿Ò»µØµãÖÁÉÙ°²ÅÅÒ»ÈË£®£¨¢ñ£©Çó6λר¼ÒÖÐÇ¡ÓÐ2λ±»°²ÅÅÔÚ¡°Ææʯ¹«Ô°¡±µÄ¸ÅÂÊ£»
£¨¢ò£©Éèx£¬y·Ö±ð±íʾ6λר¼Ò±»°²ÅÅÔÚ¡°Ææʯ¹«Ô°¡±ºÍ¡°ÆæʯչÀÀÖÐÐÄ¡±µÄÈËÊý£¬¼ÇX=|x-y|£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍûEX£®
·ÖÎö £¨¢ñ£©Éè6λר¼ÒÖÐÇ¡ÓÐiÃû±»°²ÅÅÔÚ¡°Ææʯ¹«Ô°¡±µÄʼþΪAi£¬£¨i=1£¬2£¬3£¬4£¬5£©£¬ÀûÓùŵä¸ÅÐ͵ĸÅÂÊÇó½â¼´¿É£®
£¨¢ò£©XµÄËùÓпÉÄÜÈ¡ÖµÊÇ0£¬2£¬4£®Çó³ö¸ÅÂÊ£¬µÃµ½·Ö²¼ÁУ¬È»ºóÇó½âÆÚÍû¼´¿É£®
½â´ð ½â£º£¨¢ñ£©Éè6λר¼ÒÖÐÇ¡ÓÐiÃû±»°²ÅÅÔÚ¡°Ææʯ¹«Ô°¡±µÄʼþΪAi£¬£¨i=1£¬2£¬3£¬4£¬5£©£¬Ôò$P£¨{A_2}£©=\frac{C_6^2C_4^4}{{{2^6}-2}}=\frac{15}{62}$£®¡£¨4·Ö£©
£¨¢ò£©XµÄËùÓпÉÄÜÈ¡ÖµÊÇ0£¬2£¬4£®
$P£¨X=0£©=P£¨{A_3}£©=\frac{C_6^3C_3^3}{{{2^6}-2}}=\frac{10}{31}$£¬
$P£¨X=2£©=P£¨{A_2}£©+P£¨{A_4}£©=\frac{C_6^2C_4^4}{{{2^6}-2}}+\frac{C_6^4C_2^2}{{{2^6}-2}}=\frac{15}{31}$£»
$P£¨X=4£©=P£¨{A_1}£©+P£¨{A_5}£©=\frac{C_6^1C_5^5}{{{2^6}-2}}+\frac{C_6^5}{{{2^6}-2}}=\frac{6}{31}$£®¡£¨8·Ö£©
ÔòËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ
X | 0 | 2 | 4 |
P | $\frac{10}{31}$ | $\frac{15}{31}$ | $\frac{6}{31}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÒÔ¼°ÆÚÍûµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
A£® | y=x-1 | B£® | y=£¨$\frac{1}{2}$£©x | C£® | y=x+$\frac{1}{x}$ | D£® | y=ln£¨x+1£© |
A£® | $\frac{{\sqrt{5}}}{5}$ | B£® | $-\frac{{\sqrt{5}}}{5}$ | C£® | $\frac{{2\sqrt{13}}}{13}$ | D£® | $-\frac{{2\sqrt{13}}}{13}$ |
A£® | -1-2i | B£® | -1+2i | C£® | 1+2i | D£® | 1-2i |