题目内容

(本小题满分14分)

设椭圆的左、右焦点分别为F1、F2,上顶点为A,离心率e=,在x轴负半轴上有一点B,且

(Ⅰ)若过A、B、F2三点的圆恰好与直线相切,求椭圆C的方程;

(Ⅱ)在(Ⅰ)的条件下,过右焦点F2作斜率为k的直线与椭圆C交于M、N两点,在x轴上是否存在点p(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围;如果不存在,说明理由.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网