题目内容
中央电视台星光大道某期节目中,有5位实力均等的选手参加比赛,经过四轮比赛决出周冠军(每一轮比赛淘汰l位选手).
(1)求甲、乙两位选手都进入第三轮比赛的概率;
(2)求甲选手在第三轮被淘汰的的概率.
(1)(2)
解析试题分析:(1)由于甲、乙两位选手都进入第三轮比赛,故第一、第二轮淘汰的是另三位选手中的两位选手,所以甲、乙两位选手都进入第三轮比赛的概率为
6分
(2)甲选手在第三轮被淘汰的概率为 12分
考点:古典概型
点评:主要是考查了古典概型的概率的计算,结合组合数公式来得到,属于基础题。
练习册系列答案
相关题目
某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.
| 员工号 | 1 | 2 | 3 | 4 |
甲组 | 件数 | 9 | 11 | 1l | 9 |
| 员工号 | 1 | 2 | 3 | 4 |
乙组 | 件数 | 9 | 8 | 10 | 9 |
(2)求乙组员工生产件数的平均数和方差;
(3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率.
(注:方差,其中为x1,x2, ,xn的平均数)