题目内容

袋中装着分别标有数字1,2,3,4,5的5个形状相同的小球.
(1)从袋中任取2个小球,求两个小球所标数字之和为3的倍数的概率;
(2)从袋中有放回的取出2个小球,记第一次取出的小球所标数字为x,第二次为y,求点满足的概率.

(1) ;  (2)

解析试题分析:(1)任取2次,基本事件有:[1,2] [1,3] [1,4] [1,5] [2,3] [2,4] [2,5] [3,4] [3,5] [4,5],记“两数之和为3的倍数”为事件A,则事件A中含有:[1,2] [1,5] [2,4] [4,5]共4个基本事件,所以
(2) 有放回的取出2个,基本事件有:
(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4) (2,5)
(3,1) (3,2) (3,3) (3,4) (3,5)
(4,1) (4,2) (4,3) (4,4) (4,5)
(5,1) (5,2) (5,3) (5,4) (5,5)
记“点满足”为事件,则包含:(1,1) (1,2) (1,3)(2,1) (2,2) (3,1) (3,2)共7个基本事件 ,所以
考点:本题考查了古典概型的求法
点评:对于古典概型的概率的计算,首先要分清基本事件总数及事件A包含的基本事件数,分清的方法常用列表法、画图法、列举法、列式计算等方法

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网