题目内容
如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕,正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B′;折痕l与AB交于点E,点M满足关系式![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_ST/2.png)
(1)如图,建立以AB中点为原点的直角坐标系,求点M的轨迹方程;
(2)若曲线C是由点M的轨迹及其关于边AB对称的曲线组成的,
F是AB边上的一点,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_ST/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_ST/images6.png)
【答案】分析:(1)用消参法求点M的轨迹方程,再所建的直角坐标系中,设M点坐标为(x,y),B′点坐标为(t,1),根据
,把M点坐标用含参数t的式子表示,再消去参数t,就可得到点M的轨迹方程.
(2)先根据点M的轨迹求其关于边AB对称的曲线方程,可得到曲线C的方程,,再由
=4,过点F的直线交曲线C于P、Q两点,且
=λ
,把λ用直线PQ的斜率k表示,再根据k的范围求λ的范围即可.
解答:
解:(1)以B为原点,BA所在直线为y轴,BC所在直线为x轴,
建立直角坐标系如图所示:
设B′(t,1),E(0,m),B(0,-1),
其中0≤t≤2,-1≤m≤1.
∴
,且
,∴BEB′M是菱形,设M(x,y),
则
=(x,y-m),
=(t,2),且
,即
=0
由
=0⇒tx+2(y-m)=0
由
⇒
消去参数t,m,得y=-
x2(0≤x≤2)
(2)依题意知曲线C的方程为:x2=-4y (-2≤x≤2),![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/images15.png)
如图设直线PQ的方程为y=kx-
(-
≤k≤
).
代入曲线C的方程并整理,得x2+4kx-2=0.(-2≤x≤2),
设P(x1,y1),Q(x2,y2),则
(*)
又∵
=λ
,,∴(-x1,-
)=λ(x2,
),
从而得x1=-λx2.
代入(*)得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/22.png)
1两边平方除以②式,得
,
即
,∵0≤k2≤
,∴
.
即2λ2-5λ+2≤0,∴
≤λ≤2.∴实数λ的取值范围为[
,2].
点评:本题考查了消参法求轨迹方程,以及直线与圆锥曲线位置关系的判断.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/0.png)
(2)先根据点M的轨迹求其关于边AB对称的曲线方程,可得到曲线C的方程,,再由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/3.png)
解答:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/images4.png)
建立直角坐标系如图所示:
设B′(t,1),E(0,m),B(0,-1),
其中0≤t≤2,-1≤m≤1.
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/5.png)
则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/9.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/10.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/13.png)
(2)依题意知曲线C的方程为:x2=-4y (-2≤x≤2),
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/images15.png)
如图设直线PQ的方程为y=kx-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/16.png)
代入曲线C的方程并整理,得x2+4kx-2=0.(-2≤x≤2),
设P(x1,y1),Q(x2,y2),则
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/17.png)
又∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/21.png)
从而得x1=-λx2.
代入(*)得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/22.png)
1两边平方除以②式,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/23.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/26.png)
即2λ2-5λ+2≤0,∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225710085788836/SYS201311012257100857888019_DA/28.png)
点评:本题考查了消参法求轨迹方程,以及直线与圆锥曲线位置关系的判断.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目