题目内容
20.设直线x-3y+m=0(m≠0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线分别交于点A,B,若点P(-m,0)满足|PA|=|AB|,则该双曲线的渐近线方程为y=±x.分析 先求出A,B的坐标,可得AB中点坐标,利用点P(-m,0)满足|PA|=|PB|,可得$\frac{\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}-0}{\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}+m}$=-3,从而可求双曲线的渐近线方程.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线方程为y=±$\frac{b}{a}$x,则
与直线x-3y+m=0联立,可得A($\frac{ma}{3b-a}$,$\frac{mb}{3b-a}$),B(-$\frac{ma}{3b+a}$,$\frac{mb}{3b+a}$),
∴AB中点坐标为($\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}$,$\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}$),
∵点P(-m,0)满足|PA|=|PB|,
∴$\frac{\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}-0}{\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}+m}$=-3,
∴a=b,
∴双曲线的渐近线方程为y=±x.
故答案为:y=±x.
点评 本题考查双曲线的渐近线方程,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
11.河南省2013级高中学业水平考试在2015年1月16日至18日共考试三天,需考语文、数学、英语、物理、化学、生物、政治、历史、地理九门学科,若语文、数学、英语必须安排在下午,每天上午安排其余的六门学科,且每天上午考两门,下午考一门,问有多少种安排考试顺序的方法( )
A. | 540 | B. | 720 | C. | 3240 | D. | 4320 |
8.已知tanα,tanβ是关于x的方程x2+(logaM+logbM)x-logaM•logbM=0两个根,其中a,b,M均不为1的正数,若sinαcosβ+cosαsinβ=2sinαsinβ,则a,b,M满足的关系是( )
A. | $\frac{a+b}{2}$=M | B. | $\sqrt{ab}$=M | C. | a+b=M | D. | ab=M |
5.已知f(x)是R上的奇函数,且当x∈(-∞,0]时,f(x)=-xlg(2m-x+$\frac{1}{2}$).当x>0时,不等式f(x)<0恒成立,则m的取值范围是( )
A. | (-∞,-1) | B. | (-1,1] | C. | [0,+∞) | D. | [-1,+∞) |
9.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则点C到平面BC1D的距离等于( )
A. | $\sqrt{6}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{6}}{9}$ |
10.函数f(x)=x2-1,则f(1)=( )
A. | 1 | B. | 0 | C. | -1 | D. | 2 |