题目内容
8.已知tanα,tanβ是关于x的方程x2+(logaM+logbM)x-logaM•logbM=0两个根,其中a,b,M均不为1的正数,若sinαcosβ+cosαsinβ=2sinαsinβ,则a,b,M满足的关系是( )A. | $\frac{a+b}{2}$=M | B. | $\sqrt{ab}$=M | C. | a+b=M | D. | ab=M |
分析 根据韦达定理,得到tanαt+anβ=-(logaM+logbM)=-logaM•logbMlogMab,tanαtanβ=-logaM•logbM,再根据三角形函数的化简得到tanα+tanβ=2tanαtanβ,计算即可
解答 解:∵sinαcosβ+cosαsinβ=2sinαsinβ,
∴tanα+tanβ=2tanαtanβ,
∵tanα,tanβ是关于x的方程x2+(logaM+logbM)x-logaM•logbM=0的两个根,
∴tanαt+anβ=-(logaM+logbM)=-logaM•logbMlogMab,tanαtanβ=-logaM•logbM,
∴-logaM•logbMlogMab=-2logaM•logbM,
∴logMab=2,
∴$\sqrt{ab}$=M,
故选:B.
点评 本题考查了韦达定理和三角函数的化简,属于基础题.
练习册系列答案
相关题目
19.设$a={(\frac{2}{3})^x}$,$b={(\frac{3}{2})^{x-1}}$,$c={log_{\frac{2}{3}}}x$,若x>1,则a,b,c的大小关系是( )
A. | a<b<c | B. | c<a<b | C. | b<c<a | D. | c<b<a |
16.某公司招聘员工,初试设置计算机、礼仪、专业技能、基本素质共四个科目的考试,要求专业技能、基本素质都要合格,且计算机、礼仪至少有一门合格,则能取得参加复试的资格,现有甲、乙、丙三个人参加初试,每一个人对这四门考试是否合格相互独立,其合格的概率均相同(见表),且每一门课程是否合格相互独立.
(1)求乙取得参加复试的资格的概率;
(2)记ξ表示三个人中取得复试的资格的人数,求ξ的分布及期望Eξ.
科目 | 基本素质 | 专业技能 | 计算机 | 礼仪 |
合格的概率 | $\frac{2}{3}$ | $\frac{3}{4}$ | $\frac{1}{3}$ | $\frac{1}{4}$ |
(2)记ξ表示三个人中取得复试的资格的人数,求ξ的分布及期望Eξ.
13.已知椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)与直线y=b相交于A、B两点,O是坐标原点,如果△AOB是等边三角形,则该椭圆的离心率为( )
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{3}}{6}$ |
17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的两条渐近线与以椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的左焦点为圆心、半径为$\frac{16}{5}$的圆相切,则双曲线的离心率为( )
A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{6}{5}$ |
18.设数列{an}满足an+1+an-1≤2an(n∈N*,n≥2),则称数列{an}为凸数列,已知等差数列{bn}的公差为lnd,首项b1=2,且数列{$\frac{{b}_{n}}{n}$}为凸数列,则d的取值范围是( )
A. | (0,e2] | B. | [e2,+∞) | C. | (2,e2] | D. | [2,+∞) |