题目内容

在平面直角坐标系xOy,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)C1.

(1)求椭圆C1的方程;

(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

 

【答案】

1+y2=1 2y=x+y=-x-

【解析】

:(1)因为椭圆C1的左焦点为F1(-1,0),

所以c=1.

将点P(0,1)代入椭圆方程+=1,

=1,b=1.

所以a2=b2+c2=2.

所以椭圆C1的方程为+y2=1.

(2)由题意可知,直线l的斜率显然存在且不等于0,

设直线l的方程为y=kx+m,

消去y并整理得(1+2k2)x2+4kmx+2m2-2=0.

因为直线l与椭圆C1相切,

所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.

整理得2k2-m2+1=0.

消去y并整理得k2x2+(2km-4)x+m2=0.

因为直线l与抛物线C2相切,

所以Δ2=(2km-4)2-4k2m2=0,

整理得km=1.

综合①②,解得

所以直线l的方程为y=x+y=-x-.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网